Improved chimpanzee search algorithm based on multi-strategy fusion and its application
-
摘要:
针对黑猩猩优化算法存在迭代速度慢、精度不高及初始化分布不均匀等问题,提出一种融合多策略的改进黑猩猩优化算法。采用改进的Sine混沌映射初始化种群,解决种群边界聚集分布问题,引入考虑线性权重系数、自适应加速因子的粒子群思想,配合改进的非线性收敛因子平衡算法的全局搜索能力,加快算法收敛,提高收敛精度。引入自适应水波因子改进麻雀精英突变和Bernoulli混沌映射策略,提高个体跳出局部最优的能力。利用22个基准测试函数进行迭代分析求解和Wilcoxon秩和统计检验,得出所提算法迭代速度更快、精度更高、跳出局部最优能力更强。将所提算法应用到工程实例中,进一步验证算法处理现实优化问题的优越性。
-
关键词:
- 改进的Sine混沌映射 /
- 非线性衰减因子 /
- 麻雀精英突变 /
- Bernoulli混沌映射 /
- Wilcoxon秩和检验
Abstract:In order to solve the problems of initial population boundary clustering distribution, slow convergence speed, low accuracy and easy falling into local optimum in chimpanzee search algorithm, an improved chimpanzee optimization algorithm with multi-strategy fusion (SPWChoA) was proposed. Firstly, the modified Sine chaotic map is used to initialize the population to solve the aggregation and distribution problem of population boundaries. Secondly, the concept of linear weight factor and adaptive acceleration factor for particle swarm optimization is presented. This is coupled with the enhanced nonlinear convergence factor balancing algorithm’s global search capability to quicken the algorithm’s convergence and raise its convergence accuracy. Finally, sparrow elite mutation and Bernoulli chaotic mapping strategies improved by adaptive water wave factors are introduced to improve the ability of individuals to jump out of local optima. By comparing the optimization results of 23 benchmark functions and Wilcoxon rank sum statistical test, it can be seen that the SPWChoA optimization algorithm has stronger robustness and applicability. Lastly, to further demonstrate the SPWChoA optimization algorithm’s superiority in handling actual optimization issues, the technique is applied to an engineering case.
-
表 1 基准测试函数
Table 1. Benchmark functions
编号 函数名 定义域 维度 最优值 绝对精度误差 F1 Sphere [−100, 100] 30 0 1.00×10−3 F2 Schwefel’ problem 2.22 [−10, 10] 30 0 1.00×10−3 F3 Schwefel’ problem 1.2 [−100, 100] 30 0 1.00×10−3 F4 Schwefel’ problem 2.21 [−100, 100] 30 0 1.00×10−3 F5 Generalized Rosenbrock’s Function [−30, 30] 30 0 1.00×10−2 F6 Step Function [−100, 100] 30 0 1.00×10−2 F7 Quartic Function [−1.28, 1.28] 30 0 1.00×10−2 F8 Generalized Schwefel’s problem [−500, 500] 30 − 12569.5 1.00×10+02 F9 Generalized Rastrigin’s Function [−5.12, 5.12] 30 0 1.00×10−2 F10 Ackley’s Function [−32, 32] 30 0 1.00×10−2 F11 Ceneralized Criewank Function [−600, 600] 30 0 1.00×10−2 F12 Ceneralized Penalized Function [−50, 50] 30 0 1.00×10−2 F13 Ceneralized Penalized Function [−50, 50] 30 0 1.00×10−2 F14 Shekell’s Foxholes Function [−65, 65] 2 1 1.00×10−2 F15 Kowalik’s Function [−5, 5] 4 0.0003 1.00×10−2 F16 Six-Hump Camel-Back Function [−5, 5] 2 −1.03 1.00×10−2 F17 Branin Function [−5, 5] 2 0.398 1.00×10−2 F18 Goldstein-Price Function [−2, 2] 2 3 1.00×10−2 F19 Hatman’s Function1 [0, 1] 3 −3.86 1.00×10−2 F20 Hatman’s Function2 [0, 1] 6 −3.32 1.00×10−2 F21 Shekel’s Family 1 [0, 10] 4 −10 1.00×10−2 F22 Shekel’s Family 2 [0, 10] 4 −10 1.00×10−2 表 2 函数测试实验结果(30维度)
Table 2. Experimental results of function test (30 dimensions)
函数 算法 最优值 平均值 标准差 F1 PSO 1.2781 ×1021.5311 ×1034.3431 ×103GWO 2.0584 ×10−318.8881 ×1026.9157 ×103本文算法 0 8.0417 ×1026.3995 ×103ChoA 3.1555 ×10−75.2731 ×1044.8132 ×104MFO 1.6961 ×1001.5902 ×1042.7030 ×104F2 PSO 1.2720 ×1021.2561 ×1081.9841 ×1010GWO 3.2013 ×10−183.1168 ×10176.9157 ×1014本文算法 0 1.8601 ×1034.2861 ×108ChoA 3.0828 ×10−63.5033 ×10114.8132 ×1014MFO 2.1091 ×1013.0726 ×1042.6503 ×1012F4 PSO 1.1627 ×10−11.3258 ×1017.7210 ×100GWO 3.2850 ×10−59.5806 ×1002.5107 ×101本文算法 7.2961 ×10−2142.0326 ×1009.4542 ×100ChoA 3.5794 ×10−06.4154 ×1013.9189 ×101MFO 7.2761 ×10−17.7294 ×1016.2757 ×101F6 PSO 4.0547 ×1011.1066 ×1036.8445 ×103GWO 2.4012 ×1005.3471 ×1026.0318 ×103本文算法 2.500×10−1 6.2878 ×1025.3597 ×103ChoA 4.0429 ×1004.9726 ×1044.7985 ×104MFO 1.4837 ×1032.5441 ×1042.5183 ×104F9 PSO 2.5862 ×1006.6511 ×1001.6784 ×101GWO 1.4830 ×10−31.8595 ×1002.1531 ×101本文算法 1.7312 ×10−41.0989 ×1001.3083 ×101ChoA 3.0276 ×10−46.7608 ×1016.4684 ×101MFO 2.8249 ×10−12.5109 ×1015.4009 ×101F10 PSO 1.0908 ×1002.5820 ×1018.9543 ×101GWO 0 8.1280 ×1016.8696 ×101本文算法 0 9.9993 ×1016.7406 ×101ChoA 4.8961 ×10−94.6463 ×1024.5693 ×102MFO 9.6263 ×1011.4153 ×1022.3021 ×102F11 PSO 1.1879 ×1005.2039 ×1011.2443 ×102GWO 9.8189 ×10−39.1945 ×1006.8756 ×101本文算法 0 4.6855 ×1014.5370 ×101ChoA 1.9166 ×10−23.6548 ×1023.4025 ×102MFO 1.0202 ×1001.7967 ×1022.9490 ×102F12 PSO 1.4136 ×1011.3418 ×1061.9234 ×107GWO 1.3312 ×10−11.1371 ×1049.9317 ×107本文算法 6.5778 ×10−37.5367 ×1057.6992 ×106ChoA 8.7621 ×10−14.3885 ×1084.2037 ×107MFO 1.1178 ×1012.6872 ×1079.2986 ×107F18 PSO 3.0010 ×1004.5238 ×1001.4169 ×101GWO 3.0101 ×1001.2183 ×1001.2183 ×101本文算法 3.0000 ×1003.116×100 3.1160 ×100ChoA 3.1003 ×1004.3993 ×1004.3993 ×100MFO 3.0503 ×1002.2443 ×1011.7656 ×101F19 PSO − 3.8628 ×100− 3.8579 ×10−02.3883 ×10−2GWO − 3.8527 ×100− 3.6856 ×1006.6644 ×101本文算法 − 3.9857 ×100− 3.9856 ×1002.6140 ×10−3ChoA − 3.8542 ×100− 3.7941 ×1001.6723 ×10−1MFO − 3.8628 ×100− 3.8348 ×1002.0741 ×10−1F20 PSO − 3.3220 ×100− 3.2669 ×1002.3233 ×10−1GWO − 3.2006 ×100− 3.1586 ×1002.0946 ×10−1本文算法 − 3.8518 ×100− 3.8516 ×1002.0518 ×10−4ChoA − 3.0137 ×100− 2.7966 ×1005.0789 ×10−1MFO − 3.2031 ×100− 3.1805 ×1001.5436 ×10−1F21 PSO − 2.6305 ×100− 2.5943 ×10−02.1477 ×10−1GWO − 4.2547 ×10−1− 4.2544 ×10−13.2649 ×100本文算法 − 1.0153 ×101− 6.6549 ×1007.3892 ×10−4ChoA − 4.9728 ×10−1− 4.9222 ×10−12.3510 ×10−2MFO − 5.0552 ×100− 4.8147 ×1009.3764 ×10−1F22 PSO − 6.3216 ×10−1− 6.3212 ×10−15.5567 ×10−16GWO − 3.7308 ×10−1− 3.7308 ×10−13.6373 ×10−1本文算法 − 5.0877 ×100− 4.9420 ×10−12.672×10−16 ChoA − 4.9733 ×100− 2.1872 ×10−11.9431 ×100MFO − 5.0877 ×100− 4.8186 ×10−19.6067 ×10−1表 3 Wilcoxon 秩和检验结果
Table 3. Wilcoxon rank-sum test results
函数 PSO GWO ChoA MFO F1 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20 F2 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20 F3 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20 F4 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20 F5 1.28×10−17 2.66×10−17 2.29×10−10 1.04×10−10 F6 7.21×10−18 7.07×10−18 1.36×10−17 1.38×10−10 F7 3.41×10−20 3.31×10−20 1.21×10−19 NaN F8 3.41×10−20 3.31×10−20 2.96×10−20 2.39×10−16 注:NaN表示无限大。 表 4 压力容器设计问题中各算法的最优解
Table 4. Optimal solutions of each algorithm in pressure vessel design problem
算法 Ts Th M L 适应度值 PSO 1.9841 0.8452 69.1476 84.1523 14321.1522 GWO 2.1425 0.7854 78.1463 63.1789 9542.1896 本文算法 1.2454 0.4251 65.1789 54.3254 7854.2547 ChoA 1.5748 0.8745 78.1245 66.1385 9854.1245 MFO 1.8254 0.5623 49.1278 78.3569 12412.1247 表 5 不同算法优化PID控制器得出的整定参数
Table 5. Tuning parameters derived from PID controller optimized by different algorithms
算法 Kp Ki Kd 适应度值 PSO 0.6653 0.7324 0.6614 65.4575 GWO 0.7854 0.5875 0.2221 78.1245 SPWChoA 0.2877 0.0478 0.8574 33.4578 ChoA 0.7841 0.7854 0.7541 63.1451 MFO 0.7533 0.3751 0.5315 77.5541 -
[1] 卢纯义, 于津, 余忠东, 等. 基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法[J]. 计算机科学, 2022, 49(11): 228-233. doi: 10.11896/jsjkx.210800039LU C Y, YU J, YU Z D, et al. Detection method of rebar in concrete diameter based on improved grey wolf optimizer-based SVR[J]. Computer Science, 2022, 49(11): 228-233(in Chinese). doi: 10.11896/jsjkx.210800039 [2] 于振华, 刘争气, 刘颖, 等. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 计算机应用, 2023, 43(4): 1206-1213. doi: 10.11772/j.issn.1001-9081.2022030444YU Z H, LIU Z Q, LIU Y, et al. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction[J]. Journal of Computer Applications, 2023, 43(4): 1206-1213(in Chinese). doi: 10.11772/j.issn.1001-9081.2022030444 [3] 张可为, 赵晓林, 何利, 等. 一种改进X-best引导个体和动态等级更新机制的鸡群算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(12): 2579-2593.ZHANG K W, ZHAO X L, HE L, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593(in Chinese). [4] 郑旸, 龙英文, 吉明明, 等. 融合螺旋黏菌算法的混沌麻雀搜索算法与应用[J]. 计算机工程与应用, 2023, 59(14): 124-133. doi: 10.3778/j.issn.1002-8331.2204-0073ZHENG Y, LONG Y W, JI M M, et al. Chaotic sparrow search algorithm and application based on spiral slime mould algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 124-133(in Chinese). doi: 10.3778/j.issn.1002-8331.2204-0073 [5] THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm[J]. Cluster Computing, 2019, 22(2): 4745-4766. [6] 王一镜, 罗广恩, 王陈阳, 等. 基于自适应变异粒子群算法的船舶结构优化方法[J]. 中国舰船研究, 2022, 17(2): 156-164.WANG Y J, LUO G E, WANG C Y, et al. Ship structural optimization method based on daptive mutation particle swarm algorithm[J]. Chinese Journal of Ship Research, 2022, 17(2): 156-164(in Chinese). [7] 缪燕子, 王玥, 李元龙, 等. 融合学习策略与导向果蝇机制的气味源主动定位方法研究[J]. 控制理论与应用, 2023, 40(5): 913-922. doi: 10.7641/CTA.2022.11078MIAO Y Z, WANG Y, LI Y L, et al. Study on active odor source localization method based on learning strategy and guided fruit fly mechanism[J]. Control Theory & Applications, 2023, 40(5): 913-922(in Chinese). doi: 10.7641/CTA.2022.11078 [8] LU C, GAO L, YI J. Grey wolf optimizer with cellular topological structure[J]. Expert Systems with Applications, 2018, 107: 89-114. doi: 10.1016/j.eswa.2018.04.012 [9] 王子恺, 黄学雨, 朱东林, 等. 融合边界处理机制的学习型麻雀搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(1): 286-298.WANG Z K, HUANG X Y, ZHU D L, et al. Learning sparrow search algorithm of hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 286-298(in Chinese). [10] 王万良, 金雅文, 陈嘉诚, 等. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541. doi: 10.3785/j.issn.1008-973X.2022.03.012WANG W L, JIN Y W, CHEN J C, et al. Multi role multi strategy multi-objective particle swarm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 531-541(in Chinese). doi: 10.3785/j.issn.1008-973X.2022.03.012 [11] 张晶, 贺媛媛. 融合正余弦优化与跳距优化的DV-Hop定位算法[J]. 计算机工程与科学, 2022, 44(4): 645-653. doi: 10.3969/j.issn.1007-130X.2022.04.008ZHANG J, HE Y Y. A DV-Hop positioning algorithm combining sine and cosine optimization and hop distance optimization[J]. Computer Engineering & Science, 2022, 44(4): 645-653(in Chinese). doi: 10.3969/j.issn.1007-130X.2022.04.008 [12] 李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99. doi: 10.3778/j.issn.1002-8331.2106-0148LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99(in Chinese). doi: 10.3778/j.issn.1002-8331.2106-0148 [13] 谭慧娟, 李世明, 郭文鑫, 等. 基于混沌自适应人工鱼群算法的含家庭储能配电网快速重构方法[J]. 太阳能学报, 2022, 43(5): 468-477.TAN H J, LI S M, GUO W X, et al. Fast reconfiguration method of distribution network with household energy storage based on chaotic adaptive artificial fish swarm algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 468-477(in Chinese). [14] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(8): 1712-1720.LU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese). [15] SAYED S A F, NABIL E, BADR A. A binary clonal flower pollination algorithm for feature selection[J]. Pattern Recognition Letters, 2016, 77: 21-27. doi: 10.1016/j.patrec.2016.03.014 [16] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360-2373.LIU C H, HE Q. Golden sine chimp optimization algorithm integrating multiple strategies[J]. Acta Automatica Sinica, 2023, 49(11): 2360-2373(in Chinese). [17] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49. doi: 10.11918/j.issn.0367-6234.201806096TENG Z J, LV J L, GUO L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49(in Chinese). doi: 10.11918/j.issn.0367-6234.201806096 [18] 王鹏飞, 杜忠华, 牛坤, 等. 基于改进粒子群算法的倒立摆LQR优化控制[J]. 计算机仿真, 2021, 38(2): 220-224. doi: 10.3969/j.issn.1006-9348.2021.02.048WANG P F, DU Z H, NIU K, et al. LQR optimal control of inverted pendulum based on improved particle swarm optimization algorithm[J]. Computer Simulation, 2021, 38(2): 220-224(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.02.048 [19] 唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(3): 681-692.TANG Y Q, LI C H, SONG Y F, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692(in Chinese). [20] 何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364.HE Q, LUO S H. Hybrid improved chimpanzee optimization algorithm and its mechanical application[J]. Control and Decision, 2023, 38(2): 354-364(in Chinese). [21] 刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J]. 控制与决策, 2021, 36(9): 2152-2160.LIU J S, YUAN M M, ZUO F. Global search-oriented adaptive leader salp swarm algorithm[J]. Control and Decision, 2021, 36(9): 2152-2160(in Chinese). [22] 汪超, 王丙柱, 岑豫皖, 等. 基于多样性全局最优引导和反向学习的离子运动算法[J]. 控制与决策, 2020, 35(7): 1584-1596.WANG C, WANG B Z, CEN Y W, et al. Ions motion optimization algorithm based on diversity optimal guidance and opposition-based learning[J]. Control and Decision, 2020, 35(7): 1584-1596(in Chinese). [23] DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. doi: 10.1016/j.swevo.2011.02.002 [24] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high dimension function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084(in Chinese). -


下载: