留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多策略融合的改进黑猩猩优化算法

张福兴 高腾 吴泓达

张福兴,高腾,吴泓达. 多策略融合的改进黑猩猩优化算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):235-247 doi: 10.13700/j.bh.1001-5965.2022.0891
引用本文: 张福兴,高腾,吴泓达. 多策略融合的改进黑猩猩优化算法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(1):235-247 doi: 10.13700/j.bh.1001-5965.2022.0891
ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0891
Citation: ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0891

多策略融合的改进黑猩猩优化算法

doi: 10.13700/j.bh.1001-5965.2022.0891
基金项目: 

辽宁省教育厅高校基本科研项目(JYTZD2023023) 

详细信息
    通讯作者:

    E-mail:gaoteng@dlpu.edu.cn

  • 中图分类号: TM561.2

Improved chimpanzee search algorithm based on multi-strategy fusion and its application

Funds: 

Basic Scientific Research Project of Higher Education Institutions in Liaoning Province (JYTZD2023023) 

More Information
  • 摘要:

    针对黑猩猩优化算法存在迭代速度慢、精度不高及初始化分布不均匀等问题,提出一种融合多策略的改进黑猩猩优化算法。采用改进的Sine混沌映射初始化种群,解决种群边界聚集分布问题,引入考虑线性权重系数、自适应加速因子的粒子群思想,配合改进的非线性收敛因子平衡算法的全局搜索能力,加快算法收敛,提高收敛精度。引入自适应水波因子改进麻雀精英突变和Bernoulli混沌映射策略,提高个体跳出局部最优的能力。利用22个基准测试函数进行迭代分析求解和Wilcoxon秩和统计检验,得出所提算法迭代速度更快、精度更高、跳出局部最优能力更强。将所提算法应用到工程实例中,进一步验证算法处理现实优化问题的优越性。

     

  • 图 1  混沌映射分布图和分布直方图

    Figure 1.  Distribution diagram and histogram of chaotic mapping

    图 2  加速因子变化曲线

    Figure 2.  Change curve of acceleration factor

    图 3  惯性权重变化曲线

    Figure 3.  Curve of inertia weight change

    图 4  收敛因子对比

    Figure 4.  Comparison of convergence factors

    图 5  500次迭代水波因子分布

    Figure 5.  Adaptive water wave factor distribution with 500 iterations

    图 6  本文算法优化流程

    Figure 6.  Flow chart of the proposed algrithm optimization

    图 7  连续单模态测试函数收敛曲线

    Figure 7.  Convergence curves for continuous single-modal test functions

    图 8  连续多模态测试函数收敛曲线

    Figure 8.  Convergence curves of continuous multi-modal test functions

    图 9  固定多模态测试函数收敛曲线

    Figure 9.  Convergence curves for fixed multi-modal test functions

    图 10  压力容器设计问题模型

    Figure 10.  Pressure vessel design problem model

    图 11  PID控制系统结构

    Figure 11.  Structure of PID control system

    图 12  500 MPa全自动活塞压力计

    Figure 12.  500 MPa automatic piston manometer

    图 13  检定活塞位移曲线

    Figure 13.  Calibrate the piston displacement curve

    表  1  基准测试函数

    Table  1.   Benchmark functions

    编号 函数名 定义域 维度 最优值 绝对精度误差
    F1 Sphere [−100, 100] 30 0 1.00×10−3
    F2 Schwefel’ problem 2.22 [−10, 10] 30 0 1.00×10−3
    F3 Schwefel’ problem 1.2 [−100, 100] 30 0 1.00×10−3
    F4 Schwefel’ problem 2.21 [−100, 100] 30 0 1.00×10−3
    F5 Generalized Rosenbrock’s Function [−30, 30] 30 0 1.00×10−2
    F6 Step Function [−100, 100] 30 0 1.00×10−2
    F7 Quartic Function [−1.28, 1.28] 30 0 1.00×10−2
    F8 Generalized Schwefel’s problem [−500, 500] 30 12569.5 1.00×10+02
    F9 Generalized Rastrigin’s Function [−5.12, 5.12] 30 0 1.00×10−2
    F10 Ackley’s Function [−32, 32] 30 0 1.00×10−2
    F11 Ceneralized Criewank Function [−600, 600] 30 0 1.00×10−2
    F12 Ceneralized Penalized Function [−50, 50] 30 0 1.00×10−2
    F13 Ceneralized Penalized Function [−50, 50] 30 0 1.00×10−2
    F14 Shekell’s Foxholes Function [−65, 65] 2 1 1.00×10−2
    F15 Kowalik’s Function [−5, 5] 4 0.0003 1.00×10−2
    F16 Six-Hump Camel-Back Function [−5, 5] 2 −1.03 1.00×10−2
    F17 Branin Function [−5, 5] 2 0.398 1.00×10−2
    F18 Goldstein-Price Function [−2, 2] 2 3 1.00×10−2
    F19 Hatman’s Function1 [0, 1] 3 −3.86 1.00×10−2
    F20 Hatman’s Function2 [0, 1] 6 −3.32 1.00×10−2
    F21 Shekel’s Family 1 [0, 10] 4 −10 1.00×10−2
    F22 Shekel’s Family 2 [0, 10] 4 −10 1.00×10−2
    下载: 导出CSV

    表  2  函数测试实验结果(30维度)

    Table  2.   Experimental results of function test (30 dimensions)

    函数 算法 最优值 平均值 标准差
    F1 PSO 1.2781×102 1.5311×103 4.3431×103
    GWO 2.0584×10−31 8.8881×102 6.9157×103
    本文算法 0 8.0417×102 6.3995×103
    ChoA 3.1555×10−7 5.2731×104 4.8132×104
    MFO 1.6961×100 1.5902×104 2.7030×104
    F2 PSO 1.2720×102 1.2561×108 1.9841×1010
    GWO 3.2013×10−18 3.1168×1017 6.9157×1014
    本文算法 0 1.8601×103 4.2861×108
    ChoA 3.0828×10−6 3.5033×1011 4.8132×1014
    MFO 2.1091×101 3.0726×104 2.6503×1012
    F4 PSO 1.1627×10−1 1.3258×101 7.7210×100
    GWO 3.2850×10−5 9.5806×100 2.5107×101
    本文算法 7.2961×10−214 2.0326×100 9.4542×100
    ChoA 3.5794×10−0 6.4154×101 3.9189×101
    MFO 7.2761×10−1 7.7294×101 6.2757×101
    F6 PSO 4.0547×101 1.1066×103 6.8445×103
    GWO 2.4012×100 5.3471×102 6.0318×103
    本文算法 2.500×10−1 6.2878×102 5.3597×103
    ChoA 4.0429×100 4.9726×104 4.7985×104
    MFO 1.4837×103 2.5441×104 2.5183×104
    F9 PSO 2.5862×100 6.6511×100 1.6784×101
    GWO 1.4830×10−3 1.8595×100 2.1531×101
    本文算法 1.7312×10−4 1.0989×100 1.3083×101
    ChoA 3.0276×10−4 6.7608×101 6.4684×101
    MFO 2.8249×10−1 2.5109×101 5.4009×101
    F10 PSO 1.0908×100 2.5820×101 8.9543×101
    GWO 0 8.1280×101 6.8696×101
    本文算法 0 9.9993×101 6.7406×101
    ChoA 4.8961×10−9 4.6463×102 4.5693×102
    MFO 9.6263×101 1.4153×102 2.3021×102
    F11 PSO 1.1879×100 5.2039×101 1.2443×102
    GWO 9.8189×10−3 9.1945×100 6.8756×101
    本文算法 0 4.6855×101 4.5370×101
    ChoA 1.9166×10−2 3.6548×102 3.4025×102
    MFO 1.0202×100 1.7967×102 2.9490×102
    F12 PSO 1.4136×101 1.3418×106 1.9234×107
    GWO 1.3312×10−1 1.1371×104 9.9317×107
    本文算法 6.5778×10−3 7.5367×105 7.6992×106
    ChoA 8.7621×10−1 4.3885×108 4.2037×107
    MFO 1.1178×101 2.6872×107 9.2986×107
    F18 PSO 3.0010×100 4.5238×100 1.4169×101
    GWO 3.0101×100 1.2183×100 1.2183×101
    本文算法 3.0000×100 3.116×100 3.1160×100
    ChoA 3.1003×100 4.3993×100 4.3993×100
    MFO 3.0503×100 2.2443×101 1.7656×101
    F19 PSO 3.8628×100 3.8579×10−0 2.3883×10−2
    GWO 3.8527×100 3.6856×100 6.6644×101
    本文算法 3.9857×100 3.9856×100 2.6140×10−3
    ChoA 3.8542×100 3.7941×100 1.6723×10−1
    MFO 3.8628×100 3.8348×100 2.0741×10−1
    F20 PSO 3.3220×100 3.2669×100 2.3233×10−1
    GWO 3.2006×100 3.1586×100 2.0946×10−1
    本文算法 3.8518×100 3.8516×100 2.0518×10−4
    ChoA 3.0137×100 2.7966×100 5.0789×10−1
    MFO 3.2031×100 3.1805×100 1.5436×10−1
    F21 PSO 2.6305×100 2.5943×10−0 2.1477×10−1
    GWO 4.2547×10−1 4.2544×10−1 3.2649×100
    本文算法 1.0153×101 6.6549×100 7.3892×10−4
    ChoA 4.9728×10−1 4.9222×10−1 2.3510×10−2
    MFO 5.0552×100 4.8147×100 9.3764×10−1
    F22 PSO 6.3216×10−1 6.3212×10−1 5.5567×10−16
    GWO 3.7308×10−1 3.7308×10−1 3.6373×10−1
    本文算法 5.0877×100 4.9420×10−1 2.672×10−16
    ChoA 4.9733×100 2.1872×10−1 1.9431×100
    MFO 5.0877×100 4.8186×10−1 9.6067×10−1
    下载: 导出CSV

    表  3  Wilcoxon 秩和检验结果

    Table  3.   Wilcoxon rank-sum test results

    函数 PSO GWO ChoA MFO
    F1 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20
    F2 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20
    F3 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20
    F4 3.01×10−20 3.01×10−20 3.01×10−20 3.01×10−20
    F5 1.28×10−17 2.66×10−17 2.29×10−10 1.04×10−10
    F6 7.21×10−18 7.07×10−18 1.36×10−17 1.38×10−10
    F7 3.41×10−20 3.31×10−20 1.21×10−19 NaN
    F8 3.41×10−20 3.31×10−20 2.96×10−20 2.39×10−16
     注:NaN表示无限大。
    下载: 导出CSV

    表  4  压力容器设计问题中各算法的最优解

    Table  4.   Optimal solutions of each algorithm in pressure vessel design problem

    算法 Ts Th M L 适应度值
    PSO 1.9841 0.8452 69.1476 84.1523 14321.1522
    GWO 2.1425 0.7854 78.1463 63.1789 9542.1896
    本文算法 1.2454 0.4251 65.1789 54.3254 7854.2547
    ChoA 1.5748 0.8745 78.1245 66.1385 9854.1245
    MFO 1.8254 0.5623 49.1278 78.3569 12412.1247
    下载: 导出CSV

    表  5  不同算法优化PID控制器得出的整定参数

    Table  5.   Tuning parameters derived from PID controller optimized by different algorithms

    算法 Kp Ki Kd 适应度值
    PSO 0.6653 0.7324 0.6614 65.4575
    GWO 0.7854 0.5875 0.2221 78.1245
    SPWChoA 0.2877 0.0478 0.8574 33.4578
    ChoA 0.7841 0.7854 0.7541 63.1451
    MFO 0.7533 0.3751 0.5315 77.5541
    下载: 导出CSV
  • [1] 卢纯义, 于津, 余忠东, 等. 基于改进灰狼算法优化SVR的混凝土中钢筋直径检测方法[J]. 计算机科学, 2022, 49(11): 228-233. doi: 10.11896/jsjkx.210800039

    LU C Y, YU J, YU Z D, et al. Detection method of rebar in concrete diameter based on improved grey wolf optimizer-based SVR[J]. Computer Science, 2022, 49(11): 228-233(in Chinese). doi: 10.11896/jsjkx.210800039
    [2] 于振华, 刘争气, 刘颖, 等. 基于自适应混合粒子群优化的软件缺陷预测特征选择方法[J]. 计算机应用, 2023, 43(4): 1206-1213. doi: 10.11772/j.issn.1001-9081.2022030444

    YU Z H, LIU Z Q, LIU Y, et al. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction[J]. Journal of Computer Applications, 2023, 43(4): 1206-1213(in Chinese). doi: 10.11772/j.issn.1001-9081.2022030444
    [3] 张可为, 赵晓林, 何利, 等. 一种改进X-best引导个体和动态等级更新机制的鸡群算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(12): 2579-2593.

    ZHANG K W, ZHAO X L, HE L, et al. A chicken swarm optimization algorithm based on improved X-best guided individual and dynamic hierarchy update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2579-2593(in Chinese).
    [4] 郑旸, 龙英文, 吉明明, 等. 融合螺旋黏菌算法的混沌麻雀搜索算法与应用[J]. 计算机工程与应用, 2023, 59(14): 124-133. doi: 10.3778/j.issn.1002-8331.2204-0073

    ZHENG Y, LONG Y W, JI M M, et al. Chaotic sparrow search algorithm and application based on spiral slime mould algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 124-133(in Chinese). doi: 10.3778/j.issn.1002-8331.2204-0073
    [5] THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm[J]. Cluster Computing, 2019, 22(2): 4745-4766.
    [6] 王一镜, 罗广恩, 王陈阳, 等. 基于自适应变异粒子群算法的船舶结构优化方法[J]. 中国舰船研究, 2022, 17(2): 156-164.

    WANG Y J, LUO G E, WANG C Y, et al. Ship structural optimization method based on daptive mutation particle swarm algorithm[J]. Chinese Journal of Ship Research, 2022, 17(2): 156-164(in Chinese).
    [7] 缪燕子, 王玥, 李元龙, 等. 融合学习策略与导向果蝇机制的气味源主动定位方法研究[J]. 控制理论与应用, 2023, 40(5): 913-922. doi: 10.7641/CTA.2022.11078

    MIAO Y Z, WANG Y, LI Y L, et al. Study on active odor source localization method based on learning strategy and guided fruit fly mechanism[J]. Control Theory & Applications, 2023, 40(5): 913-922(in Chinese). doi: 10.7641/CTA.2022.11078
    [8] LU C, GAO L, YI J. Grey wolf optimizer with cellular topological structure[J]. Expert Systems with Applications, 2018, 107: 89-114. doi: 10.1016/j.eswa.2018.04.012
    [9] 王子恺, 黄学雨, 朱东林, 等. 融合边界处理机制的学习型麻雀搜索算法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(1): 286-298.

    WANG Z K, HUANG X Y, ZHU D L, et al. Learning sparrow search algorithm of hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 286-298(in Chinese).
    [10] 王万良, 金雅文, 陈嘉诚, 等. 多角色多策略多目标粒子群优化算法[J]. 浙江大学学报(工学版), 2022, 56(3): 531-541. doi: 10.3785/j.issn.1008-973X.2022.03.012

    WANG W L, JIN Y W, CHEN J C, et al. Multi role multi strategy multi-objective particle swarm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(3): 531-541(in Chinese). doi: 10.3785/j.issn.1008-973X.2022.03.012
    [11] 张晶, 贺媛媛. 融合正余弦优化与跳距优化的DV-Hop定位算法[J]. 计算机工程与科学, 2022, 44(4): 645-653. doi: 10.3969/j.issn.1007-130X.2022.04.008

    ZHANG J, HE Y Y. A DV-Hop positioning algorithm combining sine and cosine optimization and hop distance optimization[J]. Computer Engineering & Science, 2022, 44(4): 645-653(in Chinese). doi: 10.3969/j.issn.1007-130X.2022.04.008
    [12] 李爱莲, 全凌翔, 崔桂梅, 等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99. doi: 10.3778/j.issn.1002-8331.2106-0148

    LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99(in Chinese). doi: 10.3778/j.issn.1002-8331.2106-0148
    [13] 谭慧娟, 李世明, 郭文鑫, 等. 基于混沌自适应人工鱼群算法的含家庭储能配电网快速重构方法[J]. 太阳能学报, 2022, 43(5): 468-477.

    TAN H J, LI S M, GUO W X, et al. Fast reconfiguration method of distribution network with household energy storage based on chaotic adaptive artificial fish swarm algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 468-477(in Chinese).
    [14] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(8): 1712-1720.

    LU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese).
    [15] SAYED S A F, NABIL E, BADR A. A binary clonal flower pollination algorithm for feature selection[J]. Pattern Recognition Letters, 2016, 77: 21-27. doi: 10.1016/j.patrec.2016.03.014
    [16] 刘成汉, 何庆. 融合多策略的黄金正弦黑猩猩优化算法[J]. 自动化学报, 2023, 49(11): 2360-2373.

    LIU C H, HE Q. Golden sine chimp optimization algorithm integrating multiple strategies[J]. Acta Automatica Sinica, 2023, 49(11): 2360-2373(in Chinese).
    [17] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49. doi: 10.11918/j.issn.0367-6234.201806096

    TENG Z J, LV J L, GUO L W, et al. An improved hybrid grey wolf optimization algorithm based on Tent mapping[J]. Journal of Harbin Institute of Technology, 2018, 50(11): 40-49(in Chinese). doi: 10.11918/j.issn.0367-6234.201806096
    [18] 王鹏飞, 杜忠华, 牛坤, 等. 基于改进粒子群算法的倒立摆LQR优化控制[J]. 计算机仿真, 2021, 38(2): 220-224. doi: 10.3969/j.issn.1006-9348.2021.02.048

    WANG P F, DU Z H, NIU K, et al. LQR optimal control of inverted pendulum based on improved particle swarm optimization algorithm[J]. Computer Simulation, 2021, 38(2): 220-224(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.02.048
    [19] 唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(3): 681-692.

    TANG Y Q, LI C H, SONG Y F, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692(in Chinese).
    [20] 何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364.

    HE Q, LUO S H. Hybrid improved chimpanzee optimization algorithm and its mechanical application[J]. Control and Decision, 2023, 38(2): 354-364(in Chinese).
    [21] 刘景森, 袁蒙蒙, 左方. 面向全局搜索的自适应领导者樽海鞘群算法[J]. 控制与决策, 2021, 36(9): 2152-2160.

    LIU J S, YUAN M M, ZUO F. Global search-oriented adaptive leader salp swarm algorithm[J]. Control and Decision, 2021, 36(9): 2152-2160(in Chinese).
    [22] 汪超, 王丙柱, 岑豫皖, 等. 基于多样性全局最优引导和反向学习的离子运动算法[J]. 控制与决策, 2020, 35(7): 1584-1596.

    WANG C, WANG B Z, CEN Y W, et al. Ions motion optimization algorithm based on diversity optimal guidance and opposition-based learning[J]. Control and Decision, 2020, 35(7): 1584-1596(in Chinese).
    [23] DERRAC J, GARCÍA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18. doi: 10.1016/j.swevo.2011.02.002
    [24] 张新明, 王霞, 康强. 改进的灰狼优化算法及其高维函数和FCM优化[J]. 控制与决策, 2019, 34(10): 2073-2084.

    ZHANG X M, WANG X, KANG Q. Improved grey wolf optimizer and its application to high dimension function and FCM optimization[J]. Control and Decision, 2019, 34(10): 2073-2084(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  108
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-04
  • 录用日期:  2022-12-30
  • 网络出版日期:  2024-07-17
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答