留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性钙钛矿太阳电池研究进展

赵政晶 蔡子贺 张赟 秦校军 赵东明 赵志国

赵政晶,蔡子贺,张赟,等. 柔性钙钛矿太阳电池研究进展[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2594-2604 doi: 10.13700/j.bh.1001-5965.2022.0839
引用本文: 赵政晶,蔡子贺,张赟,等. 柔性钙钛矿太阳电池研究进展[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2594-2604 doi: 10.13700/j.bh.1001-5965.2022.0839
ZHAO Z J,CAI Z H,ZHANG Y,et al. Research progress on flexible perovskite solar cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2594-2604 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0839
Citation: ZHAO Z J,CAI Z H,ZHANG Y,et al. Research progress on flexible perovskite solar cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2594-2604 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0839

柔性钙钛矿太阳电池研究进展

doi: 10.13700/j.bh.1001-5965.2022.0839
基金项目: 

中国华能集团科技项目(HNKJ22-H104,HNKJ20-H55,HNKJ21-H26)

详细信息
    通讯作者:

    E-mail:zj_zhao@qny.chng.com.cn

  • 中图分类号: TM914.4;TB34

Research progress on flexible perovskite solar cells

Funds: 

China Huaneng Science and Technology Project (HNKJ22-H104,HNKJ20-H55,HNKJ21-H26)

More Information
  • 摘要:

    近年来,有机无机杂化钙钛矿太阳电池(PSC)凭借其优异的光电转换效率、低成本、物料使用低、可柔性加工等特性引起了广泛关注,其中,柔性钙钛矿太阳电池(F-PSC)以其灵活弯折特性、质量轻、光电转换效率高、成本低等特点成为柔性太阳电池中的热点。基于此,针对钙钛矿光伏柔性化技术发展进展,系统阐述了柔性钙钛矿太阳电池中的核心材料体系、关键工艺研究的进展与突破,重点针对器件光电转换效率偏低、耐弯折性不足、低温制备核心层、新型透明导电电极及大面积制备技术等核心技术进展和需求,推动高效稳定柔性钙钛矿光伏技术向实际应用迈进。

     

  • 图 1  柔性钙钛矿太阳电池技术发展历程[5-14]

    Figure 1.  Development of F-PSCs[5-14]

    图 2  不同添加剂优化钙钛矿吸光层结晶扫描电镜照片[11,21-24]

    Figure 2.  SEM images of crystallization of perovskite absorber layers optimized with different additives[11,21-24]

    图 3  组分优化调控钙钛矿吸光层[30,32]

    Figure 3.  Component-optimized modulation of perovskite absorber layers[30,32]

    图 4  柔性钙钛矿界面设计[34-36]

    Figure 4.  Flexible perovskite interface design[34-36]

    图 5  正式结构电荷传输层优化策略改善柔性钙钛矿太阳电池性能[38,40-41]

    Figure 5.  Charge transport layer optimization strategies improve performance of formal structure F-PSC[38,40-41]

    图 6  反式结构电荷传输层优化策略改善柔性钙钛矿太阳电池性能[44-46]

    Figure 6.  Charge transport layer optimization strategies improve performance of trans structure F-PSC[44-46]

    图 7  基于电荷传输层优化柔性钙钛矿太阳电池[47-49]

    Figure 7.  Optimizing F-PSC via charge transport layer[47-49]

  • [1] HWANG I, UM H D, KIM B S, et al. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires[J]. Energy & Environmental Science, 2018, 11(3): 641-647.
    [2] RAMANUJAM J, SINGH U P. Copper indium gallium selenide based solar cells: a review[J]. Energy & Environmental Science, 2017, 10(6): 1306-1319.
    [3] SUN Y N, MENG L X, WAN X J, et al. Flexible high-performance and solution-processed organic photovoltaics with robust mechanical stability[J]. Advanced Functional Materials, 2021, 31(16): 2010000. doi: 10.1002/adfm.202010000
    [4] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-w
    [5] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nature Communications, 2020, 11(1): 3016. doi: 10.1038/s41467-020-16831-3
    [6] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications, 2013, 49(94): 11089-11091. doi: 10.1039/c3cc46534a
    [7] YOU J B, HONG Z R, YANG Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8(2): 1674-1680. doi: 10.1021/nn406020d
    [8] YAO K, WANG X F, XU Y X, et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite[J]. Nano Energy, 2015, 18: 165-175. doi: 10.1016/j.nanoen.2015.10.010
    [9] YANG D, YANG R X, REN X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Advanced Materials, 2016, 28(26): 5206-5213. doi: 10.1002/adma.201600446
    [10] YOON J, SUNG H, LEE G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources[J]. Energy & Environmental Science, 2017, 10(1): 337-345.
    [11] FENG J S, ZHU X J, YANG Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy[J]. Advanced Materials, 2018, 30(35): 1801418. doi: 10.1002/adma.201801418
    [12] HUANG K Q, PENG Y Y, GAO Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer[J]. Advanced Energy Materials, 2019, 9(44): 1901419. doi: 10.1002/aenm.201901419
    [13] DONG Q S, CHEN M, LIU Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability[J]. Joule, 2021, 5(6): 1587-1601. doi: 10.1016/j.joule.2021.04.014
    [14] GAO D P, LI B, LI Z, et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%[J]. Advanced Materials, 2023, 35(3): 2206387. doi: 10.1002/adma.202206387
    [15] KIM Y, LEE K Y, HWANG S K, et al. Piezoelectrics: layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators[J]. Advanced Functional Materials, 2014, 24(40): 6246. doi: 10.1002/adfm.201470262
    [16] RICHARDS B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers[J]. Solar Energy Materials and Solar Cells, 2006, 90(15): 2329-2337. doi: 10.1016/j.solmat.2006.03.035
    [17] LIN Y Z, SHAO Y C, DAI J, et al. Metallic surface doping of metal halide perovskites[J]. Nature Communications, 2021, 12: 7. doi: 10.1038/s41467-020-20110-6
    [18] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206-209. doi: 10.1126/science.aah5557
    [19] HU X T, MENG X C, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218. doi: 10.1016/j.joule.2019.06.011
    [20] PAIK M J, YOO J W, PARK J, et al. SnO2-TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells[J]. ACS Energy Letters, 2022, 7(5): 1864-1870. doi: 10.1021/acsenergylett.2c00637
    [21] HUANG Z Q, HU X T, LIU C, et al. Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance[J]. Advanced Functional Materials, 2017, 27(41): 1703061. doi: 10.1002/adfm.201703061
    [22] MENG X C, XING Z, HU X T, et al. Stretchable perovskite solar cells with recoverable performance[J]. Angewandte Chemie International Edition, 2020, 59(38): 16602-16608. doi: 10.1002/anie.202003813
    [23] DAI X Z, DENG Y H, VAN BRACKLE C H, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates[J]. Advanced Energy Materials, 2020, 10(1): 1903108. doi: 10.1002/aenm.201903108
    [24] XUE T Y, CHEN D, SU M, et al. Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(36): 18762-18772. doi: 10.1039/D2TA04502H
    [25] DUAN X P, LI X, TAN L C, et al. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells[J]. Advanced Materials, 2020, 32(26): 2000617. doi: 10.1002/adma.202000617
    [26] XIONG H, DELUCA G, RUI Y C, et al. Modifying perovskite films with polyvinylpyrrolidone for ambient-air-stable highly bendable solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35385-35394.
    [27] YANG L K, XIONG Q, LI Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(3): 1574-1582.

    YANG L K, XIONG Q, LI Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(3): 1574-1582.
    [28] YANG X, YANG H J, SU M, et al. Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity[J]. Solar RRL, 2022, 6(4): 2100991. doi: 10.1002/solr.202100991
    [29] LI M H, ZHOU J J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The Innovation, 2022, 3(6): 100310. doi: 10.1016/j.xinn.2022.100310
    [30] WANG C L, ZHAO D W, YU Y, et al. Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis[J]. Nano Energy, 2017, 35: 223-232. doi: 10.1016/j.nanoen.2017.03.048
    [31] BI C, CHEN B, WEI H T, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite[J]. Advanced Materials, 2017, 29(30): 1605900. doi: 10.1002/adma.201605900
    [32] YANG D, YANG R X, WANG K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2[J]. Nature Communications, 2018, 9: 3239. doi: 10.1038/s41467-018-05760-x
    [33] CAO B B, YANG L K, JIANG S S, et al. Flexible quintuple cation perovskite solar cells with high efficiency[J]. Journal of Materials Chemistry A, 2019, 7(9): 4960-4970. doi: 10.1039/C8TA11945G
    [34] YANG L, FENG J S, LIU Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): 2201681. doi: 10.1002/adma.202201681
    [35] WANG Z, LU Y L, XU Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%[J]. Advanced Science, 2021, 8(22): 2101856. doi: 10.1002/advs.202101856
    [36] HU X T, HUANG Z Q, ZHOU X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials, 2017, 29(42): 1703236. doi: 10.1002/adma.201703236
    [37] HU X T, MENG X C, YANG X, et al. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness[J]. Science Bulletin, 2021, 66(6): 527-535. doi: 10.1016/j.scib.2020.10.023
    [38] DI GIACOMO F, ZARDETTO V, D’EPIFANIO A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808. doi: 10.1002/aenm.201401808
    [39] WANG C L, GUAN L, ZHAO D W, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells[J]. ACS Energy Letters, 2017, 2(9): 2118-2124. doi: 10.1021/acsenergylett.7b00644
    [40] PARK M, KIM J Y, SON H J, et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells[J]. Nano Energy, 2016, 26: 208-215. doi: 10.1016/j.nanoen.2016.04.060
    [41] BU T L, LI J, ZHENG F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications, 2018, 9: 4609. doi: 10.1038/s41467-018-07099-9
    [42] BU T L, SHI S W, LI J, et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14922-14929.
    [43] YANG X, YANG H J, HU X T, et al. Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%[J]. Journal of Materials Chemistry A, 2020, 8(10): 5308-5314. doi: 10.1039/C9TA13922B
    [44] CHEN W, WU Y H, FAN J, et al. Perovskite solar cells: understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(19): 1870091. doi: 10.1002/aenm.201870091
    [45] RU P B, BI E B, ZHANG Y, et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(12): 1903487. doi: 10.1002/aenm.201903487
    [46] WANG Z Y, RONG X, WANG L Y, et al. Dual role of amino-functionalized graphene quantum dots in NiOx films for efficient inverted flexible perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8342-8350.
    [47] HUANG Z Q, HU X T, LIU C, et al. Water-resistant and flexible perovskite solar cells via a glued interfacial layer[J]. Advanced Functional Materials, 2019, 29(37): 1902629.
    [48] ZUO C T, DING L M. Modified PEDOT layer makes a 1.52 V voc for perovskite/PCBM solar cells[J]. Advanced Energy Materials, 2017, 7(2): 1601193. doi: 10.1002/aenm.201601193
    [49] ZUO C T, VAK D, ANGMO D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells[J]. Nano Energy, 2018, 46: 185-192. doi: 10.1016/j.nanoen.2018.01.037
    [50] WANG Y H, DUAN L P, ZHANG M, et al. PTAA as efficient hole transport materials in perovskite solar cells: a review[J]. Solar RRL, 2022, 6(8): 2200234. doi: 10.1002/solr.202200234
    [51] WANG Z, ZENG L X, ZHANG C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%[J]. Advanced Functional Materials, 2020, 30(32): 2001240. doi: 10.1002/adfm.202001240
    [52] HAN G S, LEE S, DUFF M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4697-4704.
    [53] NEJAND B A, NAZARI P, GHARIBZADEH S, et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate[J]. Chemical Communications, 2017, 53(4): 747-750. doi: 10.1039/C6CC07573H
    [54] LI R, XIANG X, TONG X, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835. doi: 10.1002/adma.201501333
    [55] TAVAKOLI M M, TSUI K H, ZHANG Q P, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures[J]. ACS Nano, 2015, 9(10): 10287-10295. doi: 10.1021/acsnano.5b04284
    [56] KE S M, CHEN C, FU N Q, et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28406-28411.
    [57] CASTRO-HERMOSA S, DAGAR J, MARSELLA A, et al. Perovskite solar cells on paper and the role of substrates and electrodes on performance[J]. IEEE Electron Device Letters, 2017, 38(9): 1278-1281. doi: 10.1109/LED.2017.2735178
    [58] DOU B J, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966. doi: 10.1021/acs.jpclett.7b02128
    [59] KÖNIGER T, MÜNSTEDT H. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3, 4ethylenedioxythiophene[J]. Measurement Science and Technology, 2008, 19(5): 055709. doi: 10.1088/0957-0233/19/5/055709
    [60] KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921.
    [61] NA S I, KIM S S, JO J, et al. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes[J]. Advanced Materials, 2008, 20(21): 4061-4067. doi: 10.1002/adma.200800338
    [62] LIU X, GUO X Y, LV Y, et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18141-18148.
    [63] XIE M L, WANG J, KANG J C, et al. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes[J]. Flexible and Printed Electronics, 2019, 4(3): 034002. doi: 10.1088/2058-8585/ab2f37
    [64] HEO J H, SHIN D H, SONG D H, et al. Super-flexible bis (trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(18): 8251-8258.
    [65] JEON I, YOON J, AHN N, et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(21): 5395-5401.
    [66] LI Y W, MENG L, YANG Y M, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nature Communications, 2016, 7: 10214.
  • 加载中
图(7)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  24
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-12-07
  • 网络出版日期:  2022-12-09
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答