-
摘要:
近年来,有机无机杂化钙钛矿太阳电池(PSC)凭借其优异的光电转换效率、低成本、物料使用低、可柔性加工等特性引起了广泛关注,其中,柔性钙钛矿太阳电池(F-PSC)以其灵活弯折特性、质量轻、光电转换效率高、成本低等特点成为柔性太阳电池中的热点。基于此,针对钙钛矿光伏柔性化技术发展进展,系统阐述了柔性钙钛矿太阳电池中的核心材料体系、关键工艺研究的进展与突破,重点针对器件光电转换效率偏低、耐弯折性不足、低温制备核心层、新型透明导电电极及大面积制备技术等核心技术进展和需求,推动高效稳定柔性钙钛矿光伏技术向实际应用迈进。
Abstract:In recent years, perovskite solar cells (PSCs) have attracted widespread attention owing to their excellent photoelectric conversion efficiency, low cost, low material usage, flexible processing, and other characteristics. Based on this, among the flexible solar cells, flexible perovskite solar cells (F-PSCs) have attracted much research interest due to their flexible bending, light weight, high conversion efficiency, low cost, and other characteristics. The flexible bending of flexible cells enables better processability and broader application scenarios of PSCs, making them outstandingly valuable in providing energy supply solutions for many fields, including satellites, airships, outdoor equipment, building-integrated photovoltaics, and wearable smart devices. Special emphasis is placed on addressing the technical challenges hindering practical applications, including suboptimal device power conversion efficiency, inadequate bending durability, low-temperature fabrication strategies for functional layers, development of novel transparent conductive electrodes, and upscaling technologies for large-area devices. By comprehensively analyzing these core technological breakthroughs and unresolved demands, this work aims to accelerate the transition of high-performance, stable flexible perovskite photovoltaic technologies toward further application.
-
-
[1] HWANG I, UM H D, KIM B S, et al. Flexible crystalline silicon radial junction photovoltaics with vertically aligned tapered microwires[J]. Energy & Environmental Science, 2018, 11(3): 641-647. [2] RAMANUJAM J, SINGH U P. Copper indium gallium selenide based solar cells: a review[J]. Energy & Environmental Science, 2017, 10(6): 1306-1319. [3] SUN Y N, MENG L X, WAN X J, et al. Flexible high-performance and solution-processed organic photovoltaics with robust mechanical stability[J]. Advanced Functional Materials, 2021, 31(16): 2010000. doi: 10.1002/adfm.202010000 [4] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-w [5] MENG X C, CAI Z R, ZHANG Y Y, et al. Bio-inspired vertebral design for scalable and flexible perovskite solar cells[J]. Nature Communications, 2020, 11(1): 3016. doi: 10.1038/s41467-020-16831-3 [6] KUMAR M H, YANTARA N, DHARANI S, et al. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells[J]. Chemical Communications, 2013, 49(94): 11089-11091. doi: 10.1039/c3cc46534a [7] YOU J B, HONG Z R, YANG Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility[J]. ACS Nano, 2014, 8(2): 1674-1680. doi: 10.1021/nn406020d [8] YAO K, WANG X F, XU Y X, et al. A general fabrication procedure for efficient and stable planar perovskite solar cells: morphological and interfacial control by in-situ-generated layered perovskite[J]. Nano Energy, 2015, 18: 165-175. doi: 10.1016/j.nanoen.2015.10.010 [9] YANG D, YANG R X, REN X D, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport[J]. Advanced Materials, 2016, 28(26): 5206-5213. doi: 10.1002/adma.201600446 [10] YOON J, SUNG H, LEE G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources[J]. Energy & Environmental Science, 2017, 10(1): 337-345. [11] FENG J S, ZHU X J, YANG Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy[J]. Advanced Materials, 2018, 30(35): 1801418. doi: 10.1002/adma.201801418 [12] HUANG K Q, PENG Y Y, GAO Y X, et al. High-performance flexible perovskite solar cells via precise control of electron transport layer[J]. Advanced Energy Materials, 2019, 9(44): 1901419. doi: 10.1002/aenm.201901419 [13] DONG Q S, CHEN M, LIU Y H, et al. Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability[J]. Joule, 2021, 5(6): 1587-1601. doi: 10.1016/j.joule.2021.04.014 [14] GAO D P, LI B, LI Z, et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%[J]. Advanced Materials, 2023, 35(3): 2206387. doi: 10.1002/adma.202206387 [15] KIM Y, LEE K Y, HWANG S K, et al. Piezoelectrics: layer-by-layer controlled perovskite nanocomposite thin films for piezoelectric nanogenerators[J]. Advanced Functional Materials, 2014, 24(40): 6246. doi: 10.1002/adfm.201470262 [16] RICHARDS B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers[J]. Solar Energy Materials and Solar Cells, 2006, 90(15): 2329-2337. doi: 10.1016/j.solmat.2006.03.035 [17] LIN Y Z, SHAO Y C, DAI J, et al. Metallic surface doping of metal halide perovskites[J]. Nature Communications, 2021, 12: 7. doi: 10.1038/s41467-020-20110-6 [18] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309): 206-209. doi: 10.1126/science.aah5557 [19] HU X T, MENG X C, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218. doi: 10.1016/j.joule.2019.06.011 [20] PAIK M J, YOO J W, PARK J, et al. SnO2-TiO2 hybrid electron transport layer for efficient and flexible perovskite solar cells[J]. ACS Energy Letters, 2022, 7(5): 1864-1870. doi: 10.1021/acsenergylett.2c00637 [21] HUANG Z Q, HU X T, LIU C, et al. Nucleation and crystallization control via polyurethane to enhance the bendability of perovskite solar cells with excellent device performance[J]. Advanced Functional Materials, 2017, 27(41): 1703061. doi: 10.1002/adfm.201703061 [22] MENG X C, XING Z, HU X T, et al. Stretchable perovskite solar cells with recoverable performance[J]. Angewandte Chemie International Edition, 2020, 59(38): 16602-16608. doi: 10.1002/anie.202003813 [23] DAI X Z, DENG Y H, VAN BRACKLE C H, et al. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates[J]. Advanced Energy Materials, 2020, 10(1): 1903108. doi: 10.1002/aenm.201903108 [24] XUE T Y, CHEN D, SU M, et al. Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(36): 18762-18772. doi: 10.1039/D2TA04502H [25] DUAN X P, LI X, TAN L C, et al. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells[J]. Advanced Materials, 2020, 32(26): 2000617. doi: 10.1002/adma.202000617 [26] XIONG H, DELUCA G, RUI Y C, et al. Modifying perovskite films with polyvinylpyrrolidone for ambient-air-stable highly bendable solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35385-35394. [27] YANG L K, XIONG Q, LI Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(3): 1574-1582.YANG L K, XIONG Q, LI Y B, et al. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(3): 1574-1582. [28] YANG X, YANG H J, SU M, et al. Scalable flexible perovskite solar cells based on a crystalline and printable template with intelligent temperature sensitivity[J]. Solar RRL, 2022, 6(4): 2100991. doi: 10.1002/solr.202100991 [29] LI M H, ZHOU J J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The Innovation, 2022, 3(6): 100310. doi: 10.1016/j.xinn.2022.100310 [30] WANG C L, ZHAO D W, YU Y, et al. Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis[J]. Nano Energy, 2017, 35: 223-232. doi: 10.1016/j.nanoen.2017.03.048 [31] BI C, CHEN B, WEI H T, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite[J]. Advanced Materials, 2017, 29(30): 1605900. doi: 10.1002/adma.201605900 [32] YANG D, YANG R X, WANG K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2[J]. Nature Communications, 2018, 9: 3239. doi: 10.1038/s41467-018-05760-x [33] CAO B B, YANG L K, JIANG S S, et al. Flexible quintuple cation perovskite solar cells with high efficiency[J]. Journal of Materials Chemistry A, 2019, 7(9): 4960-4970. doi: 10.1039/C8TA11945G [34] YANG L, FENG J S, LIU Z K, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): 2201681. doi: 10.1002/adma.202201681 [35] WANG Z, LU Y L, XU Z H, et al. An embedding 2D/3D heterostructure enables high-performance FA-alloyed flexible perovskite solar cells with efficiency over 20%[J]. Advanced Science, 2021, 8(22): 2101856. doi: 10.1002/advs.202101856 [36] HU X T, HUANG Z Q, ZHOU X, et al. Wearable large-scale perovskite solar-power source via nanocellular scaffold[J]. Advanced Materials, 2017, 29(42): 1703236. doi: 10.1002/adma.201703236 [37] HU X T, MENG X C, YANG X, et al. Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness[J]. Science Bulletin, 2021, 66(6): 527-535. doi: 10.1016/j.scib.2020.10.023 [38] DI GIACOMO F, ZARDETTO V, D’EPIFANIO A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates[J]. Advanced Energy Materials, 2015, 5(8): 1401808. doi: 10.1002/aenm.201401808 [39] WANG C L, GUAN L, ZHAO D W, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells[J]. ACS Energy Letters, 2017, 2(9): 2118-2124. doi: 10.1021/acsenergylett.7b00644 [40] PARK M, KIM J Y, SON H J, et al. Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells[J]. Nano Energy, 2016, 26: 208-215. doi: 10.1016/j.nanoen.2016.04.060 [41] BU T L, LI J, ZHENG F, et al. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module[J]. Nature Communications, 2018, 9: 4609. doi: 10.1038/s41467-018-07099-9 [42] BU T L, SHI S W, LI J, et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14922-14929. [43] YANG X, YANG H J, HU X T, et al. Low-temperature interfacial engineering for flexible CsPbI2Br perovskite solar cells with high performance beyond 15%[J]. Journal of Materials Chemistry A, 2020, 8(10): 5308-5314. doi: 10.1039/C9TA13922B [44] CHEN W, WU Y H, FAN J, et al. Perovskite solar cells: understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(19): 1870091. doi: 10.1002/aenm.201870091 [45] RU P B, BI E B, ZHANG Y, et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(12): 1903487. doi: 10.1002/aenm.201903487 [46] WANG Z Y, RONG X, WANG L Y, et al. Dual role of amino-functionalized graphene quantum dots in NiOx films for efficient inverted flexible perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8342-8350. [47] HUANG Z Q, HU X T, LIU C, et al. Water-resistant and flexible perovskite solar cells via a glued interfacial layer[J]. Advanced Functional Materials, 2019, 29(37): 1902629. [48] ZUO C T, DING L M. Modified PEDOT layer makes a 1.52 V voc for perovskite/PCBM solar cells[J]. Advanced Energy Materials, 2017, 7(2): 1601193. doi: 10.1002/aenm.201601193 [49] ZUO C T, VAK D, ANGMO D C, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells[J]. Nano Energy, 2018, 46: 185-192. doi: 10.1016/j.nanoen.2018.01.037 [50] WANG Y H, DUAN L P, ZHANG M, et al. PTAA as efficient hole transport materials in perovskite solar cells: a review[J]. Solar RRL, 2022, 6(8): 2200234. doi: 10.1002/solr.202200234 [51] WANG Z, ZENG L X, ZHANG C L, et al. Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%[J]. Advanced Functional Materials, 2020, 30(32): 2001240. doi: 10.1002/adfm.202001240 [52] HAN G S, LEE S, DUFF M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 4697-4704. [53] NEJAND B A, NAZARI P, GHARIBZADEH S, et al. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate[J]. Chemical Communications, 2017, 53(4): 747-750. doi: 10.1039/C6CC07573H [54] LI R, XIANG X, TONG X, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835. doi: 10.1002/adma.201501333 [55] TAVAKOLI M M, TSUI K H, ZHANG Q P, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures[J]. ACS Nano, 2015, 9(10): 10287-10295. doi: 10.1021/acsnano.5b04284 [56] KE S M, CHEN C, FU N Q, et al. Transparent indium tin oxide electrodes on muscovite mica for high-temperature-processed flexible optoelectronic devices[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28406-28411. [57] CASTRO-HERMOSA S, DAGAR J, MARSELLA A, et al. Perovskite solar cells on paper and the role of substrates and electrodes on performance[J]. IEEE Electron Device Letters, 2017, 38(9): 1278-1281. doi: 10.1109/LED.2017.2735178 [58] DOU B J, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966. doi: 10.1021/acs.jpclett.7b02128 [59] KÖNIGER T, MÜNSTEDT H. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3, 4ethylenedioxythiophene[J]. Measurement Science and Technology, 2008, 19(5): 055709. doi: 10.1088/0957-0233/19/5/055709 [60] KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921. [61] NA S I, KIM S S, JO J, et al. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes[J]. Advanced Materials, 2008, 20(21): 4061-4067. doi: 10.1002/adma.200800338 [62] LIU X, GUO X Y, LV Y, et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18141-18148. [63] XIE M L, WANG J, KANG J C, et al. Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes[J]. Flexible and Printed Electronics, 2019, 4(3): 034002. doi: 10.1088/2058-8585/ab2f37 [64] HEO J H, SHIN D H, SONG D H, et al. Super-flexible bis (trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(18): 8251-8258. [65] JEON I, YOON J, AHN N, et al. Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2017, 8(21): 5395-5401. [66] LI Y W, MENG L, YANG Y M, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nature Communications, 2016, 7: 10214. -


下载: