留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合充电平台的蜂群无人机多任务调度优化

柯挚捷 徐国宁 蔡榕 李永祥 杨燕初

柯挚捷,徐国宁,蔡榕,等. 结合充电平台的蜂群无人机多任务调度优化[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2782-2791 doi: 10.13700/j.bh.1001-5965.2022.0414
引用本文: 柯挚捷,徐国宁,蔡榕,等. 结合充电平台的蜂群无人机多任务调度优化[J]. 北京麻豆精品秘 国产传媒学报,2025,51(8):2782-2791 doi: 10.13700/j.bh.1001-5965.2022.0414
KE Z J,XU G N,CAI R,et al. Optimization of multi-mission scheduling for swarm UAVs with charging platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2782-2791 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0414
Citation: KE Z J,XU G N,CAI R,et al. Optimization of multi-mission scheduling for swarm UAVs with charging platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2782-2791 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0414

结合充电平台的蜂群无人机多任务调度优化

doi: 10.13700/j.bh.1001-5965.2022.0414
基金项目: 

中国科学院战略性先导科技专项 (XDA17020304)

详细信息
    通讯作者:

    E-mail:xugn@aircas.ac.cn

  • 中图分类号: V219

Optimization of multi-mission scheduling for swarm UAVs with charging platform

Funds: 

Strategic Priority Research Program of the Chinese Academy of the Sciences (XDA17020304)

More Information
  • 摘要:

    蜂群无人机因其数量多、成本低和统一调度等特点,具有广泛应用前景。统一调度是蜂群无人机研究的热点和难点,现有研究主要针对小规模、短时间场景,未考虑充电任务等复杂场景。面向未来多任务和长时间应用,调度优化需考虑中途充电等因素的影响。提出一种基于统一调度模型和遗传算法改进的蜂群无人机任务调度方法。将无线充电平台资源纳入无人机工作环境中,并对工作场景进行系统建模;使用遗传算法对任务和充电平台资源调配进行优化求解。利用仿真实验进行验证,结果表明:所提方法可以有效适应任务、环境和资源的变化,适用于大规模蜂群无人机多任务场景。

     

  • 图 1  无人机工作场景平面示意图

    Figure 1.  UAV working scenario

    图 2  无人机任务调度的有向图模型

    Figure 2.  Directed graph model for UAV mission scheduling

    图 3  无人机飞行剖面

    Figure 3.  UAV flight profile

    图 4  无人机在风中飞行的速度合成

    Figure 4.  Speed vector synthesis of UAV flying in wind condition

    图 5  遗传算法流程

    Figure 5.  Flow chart of genetic algorithm

    图 6  染色体编码方式

    Figure 6.  Encoding of chromosome

    图 7  遗传算法优化后的任务及资源分配

    Figure 7.  Mission and resource allocation optimized by genetic algorithm

    图 8  样本2用时对比

    Figure 8.  Comparison of time consumption for case 2

    图 9  样本5用时对比

    Figure 9.  Comparison of time consumption for case 5

    表  1  无人机不同飞行状态下的平均速度及平均功率

    Table  1.   Average speed and average power consumption of UAV in different flight conditions

    状态 平均速度/(m·s−1) 平均功率/W
    悬停 160.8
    爬升 3 320.0
    巡航 14 185.0
    下降 3 128.0
    下载: 导出CSV

    表  2  测试样本环境及任务参数

    Table  2.   Test case environment and mission parameters

    样本 特征
    1(基准) 风力:无风
    目标点高度:均为0 m
    任务截止时间:均为1 h
    充电平台功率:120 W
    无人机初始电量:U1U2为30 Wh,
    U3为40 Wh
    2(有风) 风力:东风 8 m/s(约5级风)
    3(高度) 目标点高度:M1为30 m;M2为90 m;M4为500 m
    4(截止时间) 任务截止时间:
    M2为15 min;M3为20 min;M5为10 min
    5(充电平台) 充电平台功率:P1为120 W;P2为60 W
    下载: 导出CSV

    表  3  基准与针对性优化对比

    Table  3.   Comparison between benchmark and case-by-case optimization

    样本 最大用时$ \max \; ({{T_i}})/{{\mathrm{s}}} $ 总能耗$\displaystyle\sum\limits_n {{E_i}} {\text{/J}}$ 总超时$\displaystyle\sum\limits_m {{\tau _i}} /{{\mathrm{s}}} $
    基准 优化 差值 变化幅度/% 基准 优化 差值 变化幅度/% 基准 优化 差值 变化幅度/%
    2 2099.4 1943.4 −156.0 −7.4 593073 631580 38507 6.5
    3 2459.0 2408.6 −50.4 −2.0 649034 737293 88259 13.6
    4 1736.0 2586.9 850.9 49 556448 543233 −13 215 −2.4 565.2 0 −565.2 −100
    5 2605.6 2046.7 −558.9 −21 556447 570351 13904 2.5
     注:差值负数表示针对性优化减小。
    下载: 导出CSV

    表  4  大规模测试充电平台位置

    Table  4.   Charging platform location in large-scale tests

    样本 平面位置/km 高度/m 充电功率/W
    1 (5.000, 2.000) 0 120
    2 (7.598, 3.500) 25 120
    3 (7.598, 6.500) 0 90
    4 (5.000, 8.000) 0 120
    5 (2.401, 6.500) 25 80
    6 (2.401, 3.500) 0 120
    下载: 导出CSV

    表  5  测试样本任务及无人机数量

    Table  5.   Number of missions and UAVs in test cases

    样本 任务数 无人机数
    1 10 10
    2 20 16
    3 32 24
    4 48 32
    5 64 48
    下载: 导出CSV

    表  6  不同任务规模样本测试结果

    Table  6.   Test results for samples with different mission scales

    样本 种群规模N 最大迭代数 $\max ({T_i}){\text{ /}}{{\mathrm{s}}}$ $\displaystyle\sum\limits_m {{\tau _i}} {\text{ /}}{{\mathrm{s}}}$ $\min (f)$ 计算用时/s
    1 256 100 3130 0 4.5×104 7.2
    256 100 3136 0 4.5×104 7.3
    256 100 3014 0 4.5×104 7.3
    2 512 100 7803 361.9 1.7×105 19.8
    512 100 7249 2850 5.4×105 20.5
    256 200 6683 2435 4.7×105 19.7
    3 512 200 6644 31803 5.0×106 56.4
    1024 100 7164 32238 5.1×106 57.3
    1024 200 6320 23506 3.7×106 112.3
    4 1024 200 9177 89641 1.4×107 149.5
    2048 200 11888 145724 2.3×107 303.9
    2048 200 11889 145723 2.3×107 304.2
    5 2048 200 7057 64259 1.0×107 432.2
    2048 200 7976 67623 1.1×107 442.4
    2048 400 7334 59060 9.6×106 879.9
    下载: 导出CSV

    表  7  大规模随机样本测试结果

    Table  7.   Test results of large-scale random samples

    样本 (任务数,
    无人机数)
    平均适应度函数
    变异系数
    平均运行
    时间/s
    1 (10,10) 0.07 7.91
    2 (20,16) 0.01 19.47
    3 (32,24) 0.03 112.75
    下载: 导出CSV
  • [1] 杨健, 程程, 谢旭, 等. 无人机蜂群对面攻击任务规划能力需求研究[C]//第九届中国指挥控制大会. 北京: 中国指挥与控制学会, 2021: 252-258.

    YANG J, CHENG C, XIE X, et al. Study on the mission planning requirements in the UAV swarms air to surface attack operations[C]//Proceedings of the 9th China Command and Control Conference. Beijing: Chinese Institute of Command and Control, 2021: 252-258(in Chinese).
    [2] 焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1): 61-64. doi: 10.3969/j.issn.1673-2421.2019.01.014

    JIAO S J, WANG B Q, LIU J H, et al. Review of drone swarm research at home and abroad[J]. Aerospace Electronic Warfare, 2019, 35(1): 61-64(in Chinese). doi: 10.3969/j.issn.1673-2421.2019.01.014
    [3] 杜永浩, 邢立宁, 蔡昭权. 无人飞行器集群智能调度技术综述[J]. 自动化学报, 2020, 46(2): 222-241.

    DU Y H, XING L N, CAI Z Q. Survey on intelligent scheduling technologies for unmanned flying craft clusters[J]. Acta Automatica Sinica, 2020, 46(2): 222-241(in Chinese).
    [4] CHEN G S, CRUZ J B. Genetic algorithm for task allocation in UAV cooperative control[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2003: 5582.
    [5] DI FRANCO C, BUTTAZZO G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445-462.
    [6] AHMADZADEH A, SAYYAR-ROUDSARI B, HOMAIFAR A. A hybrid projected gradient-evolutionary search algorithm for capacitated multi-source multiuavs scheduling with time windows[M]//BUTENKO S, MURPHEY R, PARDALOS P M. Recent developments in cooperative control and optimization. Berlin: Springer, 2004: 1-21.
    [7] 赵明, 苏小红, 马培军, 等. 复杂多约束UAVs协同目标分配的一种统一建模方法[J]. 自动化学报, 2012, 38(12): 2038-2048. doi: 10.3724/SP.J.1004.2012.02038

    ZHAO M, SU X H, MA P J, et al. A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions[J]. Acta Automatica Sinica, 2012, 38(12): 2038-2048(in Chinese). doi: 10.3724/SP.J.1004.2012.02038
    [8] RAMIREZ-ATENCIA C, BELLO-ORGAZ G, R-MORENO M D, et al. A hybrid MOGA-CSP for multi-UAV mission planning[C]//Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2015: 1205-1208.
    [9] GAO C, ZHEN Z Y, GONG H J. A self-organized search and attack algorithm for multiple unmanned aerial vehicles[J]. Aerospace Science and Technology, 2016, 54: 229-240. doi: 10.1016/j.ast.2016.03.022
    [10] WU W N, WANG X G, CUI N G. Fast and coupled solution for cooperative mission planning of multiple heterogeneous unmanned aerial vehicles[J]. Aerospace Science and Technology, 2018, 79: 131-144. doi: 10.1016/j.ast.2018.05.039
    [11] OH G, KIM Y, AHN J, et al. PSO-based optimal task allocation for cooperative timing missions[J]. IFAC-PapersOnLine, 2016, 49(17): 314-319. doi: 10.1016/j.ifacol.2016.09.054
    [12] SONG Y Q, SUN X Y, WANG H X, et al. Design of charging coil for unmanned aerial vehicle-enabled wireless power transfer[C]//Proceedings of the 8th International Conference on Power and Energy Systems. Piscataway: IEEE Press, 2018: 268-272.
    [13] JEONG S, BITO J, TENTZERIS M M. Design of a novel wireless power system using machine learning techniques for drone applications[C]//Proceedings of the IEEE Wireless Power Transfer Conference. Piscataway: IEEE Press, 2017: 1-4.
    [14] 王云哲, 徐国宁, 王生, 等. 蜂群无人机充电排队优化方法[J]. 航空学报, 2020, 41(10): 323928.

    WANG Y Z, XU G N, WANG S, et al. Optimization of charging queuing of UAV swarming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 323928(in Chinese).
    [15] KIM J, KIM S, JEONG J, et al. CBDN: cloud-based drone navigation for efficient battery charging in drone networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(11): 4174-4191. doi: 10.1109/TITS.2018.2883058
    [16] SHIN M, KIM J, LEVORATO M. Auction-based charging scheduling with deep learning framework for multi-drone networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4235-4248. doi: 10.1109/TVT.2019.2903144
    [17] 殷人昆. 数据结构: 用面向对象方法与C++语言描述[M]. 2版. 北京: 清华大学出版社, 2007.

    YIN R K. Data structure: described by object-oriented method and C++ language[M]. 2nd ed. Beijing: Tsinghua University Press, 2007(in Chinese).
    [18] 张启瑞, 魏瑞轩, 何仁珂, 等. 城市密集不规则障碍空间无人机航路规划[J]. 控制理论与应用, 2015, 32(10): 1407-1413. doi: 10.7641/CTA.2015.50351

    ZHANG Q R, WEI R X, HE R K, et al. Path planning for unmanned aerial vehicle in urban space crowded with irregular obstacles[J]. Control Theory & Applications, 2015, 32(10): 1407-1413(in Chinese). doi: 10.7641/CTA.2015.50351
    [19] 赵嶷飞, 郑雨欣. 城市物流无人机飞行任务剖面构建与优化[J]. 飞行力学, 2021, 39(3): 54-59.

    ZHAO Y F, ZHENG Y X. Construction and optimization of flight mission profile of urban logistics UAV[J]. Flight Dynamics, 2021, 39(3): 54-59(in Chinese).
    [20] SHI D J, DAI X H, ZHANG X W, et al. A practical performance evaluation method for electric multicopters[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1337-1348. doi: 10.1109/TMECH.2017.2675913
    [21] DIETRICH T, KRUG S, ZIMMERMANN A. An empirical study on generic multicopter energy consumption profiles[C]//Proceedings of the Annual IEEE International Systems Conference. Piscataway: IEEE Press, 2017: 1-6.
    [22] KADDANI S, VANDERPOOTEN D, VANPEPERSTRAETE J M, et al. Weighted sum model with partial preference information: application to multi-objective optimization[J]. European Journal of Operational Research, 2017, 260(2): 665-679. doi: 10.1016/j.ejor.2017.01.003
    [23] YU Y, TANG J, HUANG J Y, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361-6374. doi: 10.1109/TCOMM.2021.3089476
    [24] GIAGKIOZIS I, FLEMING P J. Methods for multi-objective optimization: an analysis[J]. Information Sciences, 2015, 293: 338-350. doi: 10.1016/j.ins.2014.08.071
    [25] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  894
  • HTML全文浏览量:  173
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-11-19
  • 网络出版日期:  2023-01-11
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答