留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的护理机器人逆运动学求解方法

张立博 李宇鹏 朱德明 付永领

张立博, 李宇鹏, 朱德明, 等 . 基于遗传算法的护理机器人逆运动学求解方法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
引用本文: 张立博, 李宇鹏, 朱德明, 等 . 基于遗传算法的护理机器人逆运动学求解方法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
ZHANG Libo, LI Yupeng, ZHU Deming, et al. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042(in Chinese)
Citation: ZHANG Libo, LI Yupeng, ZHU Deming, et al. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042(in Chinese)

基于遗传算法的护理机器人逆运动学求解方法

doi: 10.13700/j.bh.1001-5965.2021.0042
详细信息
    通讯作者:

    朱德明, E-mail: zdm-87@163.com

  • 中图分类号: TP242

Inverse kinematic solution of nursing robot based on genetic algorithm

More Information
  • 摘要:

    护理机器人结构复杂、耦合度高且机械臂不满足PIEPER准则,标准遗传算法难以精准地对其逆运动学进行求解,以至于机器人手臂末端位姿误差较大。针对标准遗传算法求解过程中早熟和局部搜索能力差的问题,采用等分区间替代随机命令产生的初始种群个体,划分5个小区间以提高种群个体的分散程度和搜索效率;在适应度函数中引入可变权因子,将位置误差的变化值作为可变权因子的变量,进化过程中可变权因子在0.5~1.0之间变化,且实时有效分配位置和姿态误差权重,确保解的收敛。通过仿真和实验验证,结果表明:改进后的遗传算法能够大幅提升收敛精度和速度,并且可以同时实现对位置和姿态的精确控制,极大地减小了机器人手臂的位姿误差。

     

  • 图 1  护理机器人样机

    Figure 1.  Nursing robot prototype

    图 2  护理机器人各连杆的连杆坐标系

    Figure 2.  Linkage coordinate system of each linkage of nursing robot

    图 3  机器人在MATLAB中的模型

    Figure 3.  Robot model in MATLAB

    图 4  种群中个体的目标函数值分布

    Figure 4.  Distribution of objective function values of individuals in population

    图 5  种群适应度函数均值和最优解的变化

    Figure 5.  Variation of the mean value of population fitness function and optimal solution

    图 6  关节空间遗传算法优化解位姿

    Figure 6.  Genetic algorithm optimization of pose in joint space

    图 7  关节运动范围等分区间

    Figure 7.  Joint range of motion equipartition interval

    图 8  等分区间前后个体的分布

    Figure 8.  Distribution of individuals before and after equipartition interval

    图 9  等分区间种群适应度函数均值和最优解的变化

    Figure 9.  Variation of the mean value of population fitness function and optimal solution in equipartition interval

    图 10  改进算法种群中个体的目标函数值分布

    Figure 10.  Distribution of objective function values of individuals in population of improved algorithm

    图 11  适应度函数均值和最优解随遗传代数的变化

    Figure 11.  Variation of the mean value of fitness function and optimal solution with number of genetic generations

    图 12  关节空间改进算法优化解位姿

    Figure 12.  Optimization of pose in joint space using improved algorithm

    图 13  三坐标测量系统

    Figure 13.  Three coordinate measuring system

    图 14  测量实验

    Figure 14.  Measurement tests

    表  1  护理机器人运动学连杆参数

    Table  1.   Nursing robot kinematic linkage parameters

    部位 关节i αi-1/(°) ai-1/mm di/mm θi/(°)
    腰部 1 0 0 0 0
    2 -90 345.0 65.5 0
    左臂 3 -90 375.0 -313.0 0
    4 90 0 -40.0 90
    5 90 0 -423.0 90
    6 90 0 105.0 0
    7 0 347.5 0 0
    右臂 3 -90 375.0 313.0 0
    4 90 0 -40.0 90
    5 90 0 -423.0 90
    6 90 0 -105.0 180
    7 0 347.5 0 0
    下载: 导出CSV
  • [1] ATAWNIH A, PAPAGEORGIOU D, DOULGERI Z. Kinematic control of redundant robots with guaranteed joint limit avoidance[J]. Robotics and Autonomous Systems, 2016, 79: 122-131. doi: 10.1016/j.robot.2016.01.006
    [2] FISCHINGER D, EINRAMHOF P, PAPOUTSAKIS K, et al. Hobbit, a care robot supporting independent living at home: First prototype and lessons learned[J]. Robotics and Autonomous Systems, 2016, 75: 60-78. doi: 10.1016/j.robot.2014.09.029
    [3] GOOK B, ROSEN J. Kinematic analysis of 7 degrees of freedom upper-limb exoskeleton robot with tilted shoulder abduction[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(1): 69-76. doi: 10.1007/s12541-013-0011-4
    [4] EIICHI Y, MATHIEU P. Whole-body motion planning for pivoting based manipulation by humanoids[J]. Applied Bionics and Biomechanics, 2006, 3(3): 227-235. doi: 10.1155/2006/683746
    [5] 李娜托. 基于改进人工蜂群算法的冗余机器臂逆解研究[J]. 组合机床与自动化加工技术, 2020, 3(9): 37-40.

    LI N T. Research on inverse solution of redundant robot based on improved artificial bee colony algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, 3(9): 37-40(in Chinese).
    [6] 张乾, 曲一兵, 昃向博. 移摆送料机器人的运动学逆解研究[J]. 现代制造技术与装备, 2020, 2(2): 46-53.

    ZHANG Q, QU Y B, ZE X B. Research on the inverse kinematics solution of the moving pendulum feeding robot[J]. Modern Manufacturing Technology and Equipment, 2020, 2(2): 46-53(in Chinese).
    [7] 徐新虎, 李桂琴, 王燕. 服务机器人手臂轨迹规划的研究[J]. 机械设计与制造, 2011, 2(58): 144-146.

    XU X H, LI G Q, WANG Y. Research on the method of trajectory planning for a service robot arm[J]. Machinery Design & Manufacture, 2011, 2(58): 144-146(in Chinese).
    [8] CRAIG J J. Introduction to robotics: Mechanics and control[M]. Reading: Addison-Wesley Publication Company, 2010: 388-423.
    [9] ALI M A, PARK H A, LEE C S G. Closed-form inverse kinematic joint solution for humanoid robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2010: 704-709.
    [10] PIEPER D L. The kinematics of manipulators under computer control[D]. Palo Alto: Stanford University, 1968: 32-66.
    [11] DUFFY J. Analysis of mechanisms and robot manipulators[M]. London: Edward Arnold, 1980: 65-78.
    [12] GOLDENBERG A A, BENHABIB B, FENTON R G. A complete generalized solution to the inverse kinematics of robots[J]. IEEE Journal of Robotics and Automation, 1985, 1(1): 14-20. doi: 10.1109/JRA.1985.1086995
    [13] AYUSAWA K, NAKAMURA Y. Fast inverse kinematics algorithm for large DOF system with decomposed gradient computation based on recursive formulation of equilibrium[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2012: 3447-3452.
    [14] MANOCHA D, CANNY J F. Efficient inverse kinematics for general 6R manipulators[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 648-657. doi: 10.1109/70.326569
    [15] 王婷婷, 王宏志, 刘清雪, 等. 遗传算法优化的无刷直流电机模糊PID控制器设计[J]. 吉林大学学报(理学版), 2020, 58(6): 1421-1428.

    WANG T T, WANG H Z, LIU Q X, et al. Design of fuzzy PID controller for brushless DC motor optimized by GA[J]. Journal of Jilin University(Science Edition), 2020, 58(6): 1421-1428(in Chinese).
    [16] 林明, 王冠, 林永才. 改进的遗传算法在机器人逆解中的应用[J]. 江苏科技大学学报(自然科学版), 2012, 26(4): 370-375.

    LIN M, WANG G, LIN Y C. Robot inverse kinematics based on improved genetic algorithm[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2012, 26(4): 370-375(in Chinese).
    [17] 孙波, 姜平, 周根荣, 等. 基于改进遗传算法的AGV路径规划[J]. 计算机工程与设计, 2020, 41(2): 550-556.

    SUN B, JIANG P, ZHONG G R, et al. AGV optimal path planning based on improved genetic algorithm[J]. Computer Engineering and Design, 2020, 41(2): 550-556(in Chinese).
    [18] 楼天良, 楼懋恩, 蔡金亚. 基于改进遗传算法的二自由度PID控制注射机液压控制系统[J]. 塑料科技, 2020, 48(10): 96-99.

    LOU T L, LOU M E, CAI J Y. Two degree of freedom PID control hydraulic control system of injection molding machine based on improved genetic algorithm[J]. Plastics Science and Technology, 2020, 48(10): 96-99(in Chinese).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  220
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 录用日期:  2021-03-05
  • 网络出版日期:  2021-03-16
  • 整期出版日期:  2022-10-20

目录

    /

    返回文章
    返回
    常见问答