留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于U-Net的掌纹图像增强与ROI提取

陆展鸿 单鲁斌 苏立循 焦雨欣 王家骅 王海霞

陆展鸿, 单鲁斌, 苏立循, 等 . 基于U-Net的掌纹图像增强与ROI提取[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(9): 1807-1816. doi: 10.13700/j.bh.1001-5965.2020.0309
引用本文: 陆展鸿, 单鲁斌, 苏立循, 等 . 基于U-Net的掌纹图像增强与ROI提取[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(9): 1807-1816. doi: 10.13700/j.bh.1001-5965.2020.0309
LU Zhanhong, SHAN Lubin, SU Lixun, et al. Palmprint enhancement and ROI extraction based on U-Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1807-1816. doi: 10.13700/j.bh.1001-5965.2020.0309(in Chinese)
Citation: LU Zhanhong, SHAN Lubin, SU Lixun, et al. Palmprint enhancement and ROI extraction based on U-Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1807-1816. doi: 10.13700/j.bh.1001-5965.2020.0309(in Chinese)

基于U-Net的掌纹图像增强与ROI提取

doi: 10.13700/j.bh.1001-5965.2020.0309
基金项目: 

浙江省重点研发计划 2019C01007

详细信息
    作者简介:

    陆展鸿  男, 学士。主要研究方向:图像识别技术

    王海霞   女, 博士, 副教授, 博士生导师。主要研究方向:精密测量与图像处理

    通讯作者:

    王海霞, E-mail:hxwang@zjut.edu.cn

  • 中图分类号: TP391.41

Palmprint enhancement and ROI extraction based on U-Net

Funds: 

Zhejiang Povincial Key Research and Development Program of China 2019C01007

More Information
  • 摘要:

    掌纹因稳定性、唯一性、难复制性及易获取等特点,是极具应用潜力的生物识别特征。针对掌纹识别中,获取掌纹感兴趣区域(ROI)与增强掌纹信息普遍存在的时间成本大,方法之间有依赖关系等问题,提出了一种基于U-Net神经网络结构的掌纹图像预处理方法。通过香港理工大学掌纹库进行实验对比,结果表明,所提方法能消除预处理方法之间的相互影响,实现对掌纹图像的去噪与增强处理,并能快速、高精度提取感兴趣区域。

     

  • 图 1  本文方法流程图

    Figure 1.  Proposed method flow chart

    图 2  预处理步骤

    Figure 2.  Pre-processingsteps

    图 3  U-Net神经网络结构

    Figure 3.  U-Net neural network structure

    图 4  激活函数图形

    Figure 4.  Graph of activation functions

    图 5  关键点及掌纹对应谷点

    Figure 5.  Key points and correspondingly valley points on plamprint

    图 6  ROI提取处理

    Figure 6.  ROI extraction processing diagram

    图 7  不同掌纹图像的增强结果

    Figure 7.  Enhancement results of different palmprint images

    图 8  BM3D去噪+Gabor小波增强后为真值的掌纹增强对比

    Figure 8.  Comparison of palmprint enhancement after BM3D denoising +Gabor wavelet enhancement as truth value

    图 9  OBLNM增强后为真值的掌纹增强对比

    Figure 9.  Comparison of palmprint enhancement after OBLNM enhancement as truth value

    表  1  U-Net神经网络模型参数

    Table  1.   U-Net neural network model parameters

    层类型 输入大小 滤波器大小 重复次数
    卷积模块 1×384×280 3×3 1
    卷积模块 64×384×280 3×3 1
    池化层 64×384×280 2×2 1
    卷积模块 64×192×140 3×3 2
    池化层 128×192×140 2×2 1
    卷积模块 128×96×70 3×3 2
    池化层 256×96×70 2×2 1
    卷积模块 256×48×35 3×3 2
    上采样层 512×48×35 3×3 1
    卷积模块 512×96×70 3×3 2
    上采样层 256×96×70 3×3 1
    卷积模块 256×192×140 3×3 2
    上采样层 128×192×140 3×3 1
    卷积模块 128×384×280 3×3 1
    卷积模块 64×384×280 3×3 1
    卷积模块 64×384×280 1×1 1
    下载: 导出CSV

    表  2  掌纹增强效果比较结果

    Table  2.   Comparison results of palmprint enhancement

    方法 BM3D去噪+Gabor小波增强后为真值 OBLNM增强后为真值
    PSNR Entropy AMBE PSNR Entropy AMBE
    BM3D去噪+Gabor小波增强 24.727 6 6.435 6 3.163 0 24.049 3 6.531 6 4.168 1
    OBLNM 23.171 6 6.916 0 12.419 8 26.334 8 6.877 0 5.930 9
    RKTFILT 23.499 4 6.820 0 15.239 3 28.022 2 6.753 7 6.806 8
    SRAD 26.925 8 6.005 4 7.346 4 27.037 8 6.154 6 5.653 2
    本文方法 27.120 8 7.247 6 3.165 3 27.916 9 6.920 7 3.210 1
    下载: 导出CSV

    表  3  掌纹感兴趣区域重合度分析

    Table  3.   Analysis of coincidence degree of palmprint ROI

    方法 面积重合率/%
    方法1 91.18
    方法2 88.00
    本文方法 94.00
    下载: 导出CSV

    表  4  掌纹分割图像相似度对比

    Table  4.   Similarity comparison of palmprint segmentation images

    方法 Cosin相似度/% 哈希相似度/%
    方法1 99.32 73.17
    方法2 99.13 71.61
    本文方法 99.49 76.47
    下载: 导出CSV

    表  5  每张掌纹图像处理时间

    Table  5.   Processing time of each palmprint image

    方法 时间/ms
    增强 分割 增强和分割
    方法1 1 355.73 32.23 1 387.96
    方法2 1 355.73 14.49 1 370.22
    本文方法 90.49
    下载: 导出CSV
  • [1] KUMAR A, KWONG C.Towards contactless, low-cost and accurate 3D fingerprint identification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):681-696. doi: 10.1109/TPAMI.2014.2339818
    [2] LU J W, LIONG V E, ZHOU X Z, et al.Learning compact binary face descriptor for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10):2041-2056. doi: 10.1109/TPAMI.2015.2408359
    [3] NGUYEN K, FOOKES C, JILLELA R, et al.Long range iris recognition:A survey[J].Pattern Recognition, 2017, 72(12):123-143.
    [4] XIANG B H, YU Z X, QU H B.An improved algorithm of principal line extraction and registration based on MFRAT and ICP[J].Pattern Recognition and Artificial Intelligence, 2015, 28(3):260-265.
    [5] WONG M, ZHANG D, KONG W K, et al.Real-time palmprint acquisition system design[J].IEE Proceedings Vision, Image and Signal Processing, 2005, 152(5):527-534. doi: 10.1049/ip-vis:20049040
    [6] 李艳, 吴贵芳, 戴高乐, 等.一种新的掌纹轮廓特征点提取算法[J].微电子学与计算机, 2010, 27(5):90-94.

    LI Y, WU G F, DAI G L, et al.A new algorithm to extract contour feature points of palmprint[J].Microelectronics and Computer, 2010, 27(5):90-94(in Chinese).
    [7] 卢妍辉.智能交通系统中车辆路径识别方法[J].交通世界, 2018(35):15-16.

    LU Y H.Vehicle route recognition method in intelligent transportation system[J].Transpoworld, 2018(35):15-16(in Chinese).
    [8] 张馨心, 姚爱琴, 孙运强, 等.基于深度学习的步态识别算法优化研究[J].自动化与仪表, 2020, 35(4):70-74.

    ZHANG X X, YAO A Q, SUN Y Q, et al.Research on optimization of gait recognition algorithm based on deep learning[J].Automation & Instrumentation, 2020, 35(4):70-74(in Chinese).
    [9] RONNEBERGER O, FISCHER P, BROX T.U-Net: Convolutional networks for biomedical image segmentation[EB/OL].(2015-05-18)[2020-06-28].
    [10] YUE F, ZUO W M, ZHANG D, et al.Orientation selection using modified FCM for competitive code-based palmprint recognition[J].Pattern Recognition, 2009, 42(11):2841-2849. doi: 10.1016/j.patcog.2009.03.015
    [11] SHEN L L, WU S P, ZHENG S H, et al. Embedded palmprint recognition system using OMAP 3530[J].Sensors, 2012, 12(2):1482-1493. doi: 10.3390/s120201482
    [12] LI C, LIU F, ZHANG Y Z.A principal palm-line extraction method for palmprint images based on diversity and contrast[C]//Proceedings of the 3rd International Congress on Image and Signal Processing.Berlin: Springer, 2010: 1772-1777.
    [13] ALI M M H, YANAWAR P, GAIKWAD A T.Study of edge detection methods based on palmprint lines[C]//Proceeding of the International Conference on Electrical, Electronics, and Optimization Techniques.Berlin: Springer, 2016: 1344-1350.
    [14] 许学斌, 张德运, 张新曼, 等.基于离散曲波变换和支持向量机的掌纹识别方法[J].红外与毫米波学报, 2009, 28(6):456-460.

    XU X B, ZHANG D Y, ZHANG X M, et al.Palmprint recognition method based on discrete curvelet transform and support vector machine[J].Journal of Infrared and Millimeter Waves, 2009, 28(6):456-460(in Chinese).
    [15] XU X B, LU L B, ZHANG X M, et al.Multispectral palmprint recognition using multiclass projection extreme learning machine and digital shearlet transform[J].Neural Computing and Applications, 2016, 27(1):143-153.
    [16] 吴婕, 任江涛.基于子空间特征融合的两级掌纹识别算法[J].计算机工程与应用, 2015, 51(11):175-178.

    WU J, REN J T.Two level palmprint recognition algorithm based on subspace features[J].Computer Engineering and Applications, 2015, 51(11):175-178(in Chinese).
    [17] 李新春, 马红艳, 林森.基于子空间与纹理特征融合的掌纹识别[J].激光与光电子学进展, 2019, 56(7):147-155.

    LI X C, MA H Y, LI S.Palmprint recognition based on subspace and texture feature fusion[J].Laser & Optoelectronics Progress, 2019, 56(7):147-155(in Chinese).
    [18] IZADPANAHKAKHK M, RAZAVI S, TAGHIPOUR-GORJIKOL-AIE M, et al. Deep region of interest and feature extraction models for palmprint verification using convolutional neural networks transfer learning[J].Applied Sciences, 2018, 8(7):1210. doi: 10.3390/app8071210
    [19] GAO X J, LUO X L, PAN X, et al.Palmprint recognition based on deep learning[C]//Proceedings of the International Conference on Wireless Mobile and Multi-media.Berlin: Springer, 2015: 212-214.
    [20] HUANG D S, JIA W, ZHANG D.Palmprint verification based on principal lines[J].Pattern Recognition, 2008, 41(4):1316-1328.
    [21] WU X, ZHANG D, WANG K.Palm line extraction and matching for personal authentication[J].IEEE Transactions on Systems Man & Cybernetics Part A:Systems & Humans, 2006, 36(5):978-987. doi: 10.1109/TSMCA.2006.871797
    [22] 谢杰成, 张大力, 徐文立.小波图象去噪综述[J].中国图象图形学报, 2002, 7(3):3-11.

    XIE J C, ZHANG D L, XU W L.Overview on wavelet image denoising[J].Journal of Image and Graphics, 2002, 7(3):3-11(in Chinese).
    [23] 孔平.基于偏微分方程的图像去噪与增强研究[D].南京: 南京理工大学, 2012.

    KONG P.Research on image denoising and enhancement based on partial differential equation[D].Nanjing: Nanjing University of Science and Technology, 2012(in Chinese).
    [24] DANIELYAN A, KATKOVNIK V, EGIAZARIAN K.BM3D frames and variational image deblurring[J].IEEE Transactions on Image Processing, 2012, 21(4):1715-1728.
    [25] 张秀峰, 张真林, 谢红.掌纹ROI分割算法的研究与实现[J].计算机科学, 2016, 43(S2):170-173.

    ZHANG X F, ZHANG Z L, XIE H.Research and realization of palmprint ROI segmentation algorithm[J].Computer Science, 2016, 43(S2):170-173(in Chinese).
    [26] MENG Z, FAN Z Y, ZHAO Z C, et al.ENS-Unet: End-to-end noise suppression U-Net for brain tumor segmentation[C]//Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway: IEEE Press, 2018: 5886-5889.
    [27] QIAN P, LI A J, LIU M H.Latent fingerprint enhancement based on denseUNet[C]//2019 International Conference on Biometrics (ICB).Piscataway: IEEE Press, 2019: 1-6.
    [28] LIU D, SUN D M.Contactless palmprint recognition based on convolutional neural network[C]//Proceedings of the IEEE International Conference on Signal Processing.Piscataway: IEEE Press, 2016: 1363-1367.
    [29] SUN Q L, ZHANG J X, YANG A Q, et al.Palmprint recognition with deep convolutional features[J]//Proceedings of the Chinese Conference on Image and Graphics Technologies.Berlin:Springer, 2017:12-19.
    [30] LIN Z, CHENG Z X, YING S, et al.Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset[J].Symmetry, 2018, 10(4):78.
    [31] 王海霞, 杨熙丞, 梁荣华, 等.基于轻量级U-Net神经网络提取OCT内指纹和外指纹[J].高技术通讯, 2019(11):1063-1072.

    WANG H X, YANG X C, LIANG R H, et al.OCT internal and external fingerprints generation based on a lightweight U-Net neural network[J].Chinese High Technology Letters, 2019(11):1063-1072(in Chinese).
    [32] 周瞳, 黄晨昕, 胡锐.基于深度卷积网络的主掌线纹区域的提取[J].工业控制计算机, 2018, 31(7):97-98.

    ZHOU T, HUANG C X, HU R.Extracting main lines area on palm based on deep convolutional network[J].Industrial Control Computer, 2018, 31(7):97-98(in Chinese).
    [33] PolyU Palmprint Palmprint Database[EB/OL].(2020-08-06)[2020-06-28].
    [34] COUPÉ P, HELLIER P, KERVRANN C.Nonlocal means-based speckle filtering for ultrasound images[J].IEEE Transactions on Image Processing, 2009, 18(10):2221-2229. doi: 10.1109/TIP.2009.2024064
    [35] ROGOWSKA J, BRYANT C M, BREZINSKI M E.Cartilage thickness measurements from optical coherence tomography[J].Journal of the Optical Society of America A:Optics, Image Science, and Vision, 2003, 20(2):357-367. doi: 10.1364/JOSAA.20.000357
    [36] YU Y J, ACTON S T.Speckle reducing anisotropic diffusion[J].IEEE Transactions on Image Processing, 2002, 11(11):1260-1270. doi: 10.1109/TIP.2002.804276
    [37] 刘佳雯, 陈勇.关于掌纹图像基于形态学的角点检测的定位分割方法[J].现代计算机, 2016(24):35-38.

    LIU J W, CHEN Y.Research on go chess game image recognition algorithm[J].Modern Computer, 2016(24):35-38(in Chinese).
    [38] ZHANG D, KONG W K, YOU J, et al.Online palmprint identification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9):1041-1050. doi: 10.1109/TPAMI.2003.1227981
    [39] VENKATESAN R, KOON S M, JAKUBOWSKI M H, et al.Robust image hashing[C]//IEEE International Conference on Image Processing.Piscataway: IEEE Press, 2000: 664-666.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1574
  • HTML全文浏览量:  367
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 录用日期:  2020-07-22
  • 网络出版日期:  2020-09-20

目录

    /

    返回文章
    返回
    常见问答