留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ADRC和RBF神经网络的MSCSG控制系统设计

李磊 任元 陈晓岑 尹增愿

李磊, 任元, 陈晓岑, 等 . 基于ADRC和RBF神经网络的MSCSG控制系统设计[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(10): 1966-1972. doi: 10.13700/j.bh.1001-5965.2019.0536
引用本文: 李磊, 任元, 陈晓岑, 等 . 基于ADRC和RBF神经网络的MSCSG控制系统设计[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(10): 1966-1972. doi: 10.13700/j.bh.1001-5965.2019.0536
LI Lei, REN Yuan, CHEN Xiaocen, et al. Design of MSCSG control system based on ADRC and RBF neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1966-1972. doi: 10.13700/j.bh.1001-5965.2019.0536(in Chinese)
Citation: LI Lei, REN Yuan, CHEN Xiaocen, et al. Design of MSCSG control system based on ADRC and RBF neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1966-1972. doi: 10.13700/j.bh.1001-5965.2019.0536(in Chinese)

基于ADRC和RBF神经网络的MSCSG控制系统设计

doi: 10.13700/j.bh.1001-5965.2019.0536
基金项目: 

航天装备预先研究项目 305080506

北京市“高创计划”青年人才拔尖项目 2017000026833ZK23

详细信息
    作者简介:

    李磊  男, 硕士研究生。主要研究方向:航天器导航与控制技术

    任元  男, 博士, 副教授, 博士生导师。主要研究方向:新型磁悬浮惯性机构和量子精密测量技术

    陈晓岑  女, 博士研究生。主要研究方向:网络化滤波、航天器姿态控制

    尹增愿  男, 博士研究生。主要研究方向:航天器导航与控制技术

    通讯作者:

    任元, E-mail: renyuan_823@aliyun.com

  • 中图分类号: V448.2

Design of MSCSG control system based on ADRC and RBF neural network

Funds: 

Aerospace Equipment Advance Research Project 305080506

Top Young Talents Program of Beijing High-Tech Innovation Program 2017000026833ZK23

More Information
  • 摘要:

    为了克服外部扰动突变对磁悬浮转子悬浮稳定度和磁悬浮控制敏感陀螺(MSCSG)输出力矩精度的影响,提出了一种基于自抗扰控制器(ADRC)和径向基函数(RBF)神经网络相结合的MSCSG径向偏转控制方法。阐明了ADRC参数对MSCSG控制效果的影响,通过优化设计ADRC,并将RBF神经网络和ADRC结合运用,实现对控制器参数的实时调试,从而克服外界扰动突变的影响。仿真证明所提方法相较于单ADRC控制,不仅改善了解耦控制精度,而且提高了系统对外部扰动和参数变化的响应速度和鲁棒性,可应用于MSCSG的高精度、快响应、强鲁棒控制。

     

  • 图 1  MSCSG定子及径向磁轴承结构

    Figure 1.  Stator and radial magnetic bearing structure of MSCSG

    图 2  MSCSG转子及轴向磁轴承结构

    Figure 2.  Rotor and axial magnetic bearing structure of MSCSG

    图 3  自抗扰控制器工作原理[10]

    Figure 3.  Working principle of auto disturbance rejection controller[10]

    图 4  二通道磁悬浮转子自抗扰控制系统

    Figure 4.  Auto disturbance rejection control system for two-channel magnetic suspension rotor

    图 5  RBF神经网络结构[16]

    Figure 5.  Structure of RBF neural network[16]

    图 6  基于RBF神经网络的自抗扰控制器

    Figure 6.  Auto disturbance rejection controller based on RBF neural network

    图 7  对突变阶跃扰动的抗扰性能对比

    Figure 7.  Comparison of anti-interference performance of step disturbance to mutations

    图 8  对突变正弦扰动的抗扰性能对比

    Figure 8.  Comparison of anti-interference performance of sinusoidal disturbance to mutations

    图 9  对突变随机扰动的抗扰性能对比

    Figure 9.  Comparison of anti-interference performance of random disturbances to mutations

    表  1  系统仿真参数

    Table  1.   System simulation parameters

    参数 数值
    JX/(kg·m2) 0.009 7
    JZ/(kg·m2) 0.028 7
    JY/(kg·m2) 0.009 7
    lm/m 0.115 8
    N 200
    kp 1 000
    R 200
    Lp 0.005
    Fr/Hz 30
    B/T 0.4
    TES 400
    kd 100
    M 10 000
    HID 20
    下载: 导出CSV
  • [1] REN Y, CHEN X C, CAI Y W, et al.Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J].IEEE Transactions on Industrial Electronics, 2017, 65(6):4921-4932.
    [2] 舒适, 房建成, 张伟, 等.基于MSCMG大型遥感卫星高精度姿态控制方法[J].中国惯性技术学报, 2017, 25(4):421-431.

    SHU S, FANG J C, ZHANG W, et al.High-precision attitude control method based on MSCMG for large-scale remote sensing satellite[J].Journal of Chinese Inertial Technology, 2017, 25(4):421-431(in Chinese).
    [3] 王平, 王华, 任元.基于MSCMG金字塔构型的航天器姿态测控一体化控制方法[J].系统工程与电子技术, 2016, 38(1):123-129.

    WANG P, WANG H, REN Y.Measurement and control integrated method for spacecraft attitude based on MSCMGs with pyramid configuration[J].Systems Engineering and Electron-ics, 2016, 38(1):123-129(in Chinese).
    [4] CHEN X C, CAI Y W, REN Y, et al.Spacecraft angular rates and angular acceleration estimation using single-gimbal mag netically suspended control moment gyros[J].IEEE Transactions on Industrial Electronics, 2019, 66(1):440-450. doi: 10.1109/TIE.2018.2826468
    [5] XU G F, CAI Y W, REN Y, et al.Application of a new Lorentz force-type tilting control magnetic bearing in a magnetically suspended control sensitive gyroscope with cross-sliding mode control[J].Transactions of the Japan Society for Aeronautical and Space Sciences, 2018, 61(1):40-47. doi: 10.2322/tjsass.61.40
    [6] 陈晓岑, 周东华, 陈茂银.基于逆系统方法的DGMSCMG框架伺服系统解耦控制研究[J].自动化学报, 2013, 39(5):502-509.

    CHEN X C, ZHOU D H, CHEN MAO Y.Decoupling control of gimbal servo system of DGMSCMG based on dynamic inverse system method[J].Acta Automatica Sinica, 2013, 39(5):502-509(in Chinese).
    [7] 夏长峰, 蔡远文, 任元, 等.MSCSG转子不平衡振动原理分析与建模[J].北京麻豆精品秘 国产传媒学报, 2018, 44(11):2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044

    XIA C F, CAI Y W, REN Y, et al.Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):2321-2328(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0044
    [8] 夏长峰, 蔡远文, 任元, 等.磁悬浮控制敏感陀螺转子前馈解耦内模控制[J].北京麻豆精品秘 国产传媒学报, 2018, 44(3):480-488. doi: 10.13700/j.bh.1001-5965.2017.0190

    XIA C F, CAI Y W, REN Y, et al.Feedforward decoupling and internal model control for rotor of magnetically suspended control and sensing gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):480-488(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0190
    [9] ZHAO C Z, YI H.Design ADRC for two special kinds of sys-tems[C]//Proceedings of the 30th Chinese Control Conference.Piscataway: IEEE Press, 2011: 229-234.
    [10] 薛立娟, 李海涛, 李红, 等.基于ADRC的MSCMG框架系统高精度控制[J].北京麻豆精品秘 国产传媒学报, 2012, 38(11):1497-1501. http://bhxb.cq5520.com/CN/Y2012/V/I11/1497

    XUE L J, LI H T, LI H, et al.High precision control based on ADRC used in gimbal system of MSCMG[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(11):1497-1501(in Chinese). http://bhxb.cq5520.com/CN/Y2012/V/I11/1497
    [11] HERBST G.A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners[J].Electronics, 2013, 2(3):246-279.
    [12] 王平, 王华, 任元.磁悬浮控制力矩陀螺转子系统径向自抗扰解耦控制和扰动抑制[J].兵工自动化, 2015, 34(10):59-63.

    WANG P, WANG H, REN Y.Decoupling control and disturbance rejection of radial rotor system in magnetically suspended control moment gyro based on ADRC[J].Ordnance Industry Automation, 2015, 34(10):59-63(in Chinese).
    [13] YU C M, WANG Z, REN Y, et al.MSCSG two degree of freedom attitude measurement method[J].Journal of Physics:Conference Series, 2019, 1176(4):042054.
    [14] 石晨曦.自抗扰控制及控制器参数整定方法的研究[D].无锡: 江南大学, 2008: 15-20.

    SHI C X.Auto-disturbance rejections controllers and the parameter adjusting[D].Wuxi: Jiangnan University, 2008: 15-20(in Chinese).
    [15] 李明, 封航, 张延顺.基于UMAC的RBF神经网络PID控制[J].北京麻豆精品秘 国产传媒学报, 2018, 44(10):2063-2070. doi: 10.13700/j.bh.1001-5965.2017.0777

    LI M, FENG H, ZHANG Y S.RBF neural network tuning PID control based on UMAC[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10):2063-2070(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0777
    [16] YANG S, CAO Y, PENG Z, et al.Distributed formation control of nonholonomic autonomous vehicle via RBF neural network[J].Mechanical Systems and Signal Processing, 2017, 87(B):81-95.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1100
  • HTML全文浏览量:  185
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 录用日期:  2019-11-15
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答