留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平流层风场预测的浮空器轨迹控制

李魁 邓小龙 杨希祥 侯中喜

李魁, 邓小龙, 杨希祥, 等 . 基于平流层风场预测的浮空器轨迹控制[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(5): 1008-1018. doi: 10.13700/j.bh.1001-5965.2018.0538
引用本文: 李魁, 邓小龙, 杨希祥, 等 . 基于平流层风场预测的浮空器轨迹控制[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(5): 1008-1018. doi: 10.13700/j.bh.1001-5965.2018.0538
LI Kui, DENG Xiaolong, YANG Xixiang, et al. Trajectory control of aerostat based on prediction of stratospheric wind field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1008-1018. doi: 10.13700/j.bh.1001-5965.2018.0538(in Chinese)
Citation: LI Kui, DENG Xiaolong, YANG Xixiang, et al. Trajectory control of aerostat based on prediction of stratospheric wind field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1008-1018. doi: 10.13700/j.bh.1001-5965.2018.0538(in Chinese)

基于平流层风场预测的浮空器轨迹控制

doi: 10.13700/j.bh.1001-5965.2018.0538
基金项目: 

湖南省自然科学基金 2018JJ3590

湖南省自然科学基金 2018JJ3587

详细信息
    作者简介:

    李魁  男, 硕士研究生。主要研究方向:临近空间飞行器动力学与控制

    杨希祥  男, 博士, 副教授, 硕士生导师。主要研究方向:临近空间飞行器总体设计、动力学与控制

    通讯作者:

    杨希祥.E-mail:nkyangxixiang@163.com

  • 中图分类号: V321.2

Trajectory control of aerostat based on prediction of stratospheric wind field

Funds: 

Natural Science Foundation of Hunan Province, China 2018JJ3590

Natural Science Foundation of Hunan Province, China 2018JJ3587

More Information
  • 摘要:

    平流层风场环境对浮空器设计和轨迹控制具有重要影响。针对平流层风场建模,以长沙地区2005—2010年的风场数据为例,首先采用本征正交分解(POD)方法对风场数据进行降阶处理;然后分别采用Fourier级数与BP神经网络算法对平流层风场进行预测,并对2种模型的预测精度进行比较分析;最后通过建立临近空间浮空器的动力学模型和高度调控模型,分析2种风场预测模型对浮空器轨迹控制的影响。研究结果表明,相对于Fourier预测模型,基于BP神经网络预测模型的预测精度更高,可信度更强,能够更好地为浮空器飞行轨迹控制提供参考价值。

     

  • 图 1  风场预测模型原理图

    Figure 1.  Schematic of wind field prediction model

    图 2  东西方向风场POD模态的相对和累积模态能量

    Figure 2.  Relative and cumulative modal energy of east-west wind field POD modes

    图 3  南北方向风场POD模态的相对和累积模态能量

    Figure 3.  Relative and cumulative modal energy of north-south wind field POD modes

    图 4  POD降阶模型

    Figure 4.  POD reduced order model

    图 5  Fourier级数拟合

    Figure 5.  Fourier series fitting

    图 6  基于Fourier风场预测

    Figure 6.  Prediction of wind field based on Fourier

    图 7  基于BP神经网络预测系数

    Figure 7.  Prediction of coefficients based on BP neural network

    图 8  基于BP神经网络风场预测

    Figure 8.  Prediction of wind field based on BP neutral network

    图 9  风场预测误差

    Figure 9.  Wind field prediction errors

    图 10  Fourier级数拟合误差

    Figure 10.  Fourier series fitting errors

    图 11  BP神经网络预测误差

    Figure 11.  Prediction errors of BP neural network

    图 12  五天风场预测

    Figure 12.  Wind field prediction for 5 days

    图 13  工作流程图

    Figure 13.  Diagram of work process

    图 14  竖直方向运动状态

    Figure 14.  Motion state in vertical direction

    图 15  水平方向运动状态

    Figure 15.  Motion state in horizontal direction

  • [1] 王彦广, 李健全, 李勇, 等.近空间飞行器的特点及其应用前景[J].航天器工程, 2007, 16(1):50-57. doi: 10.3969/j.issn.1673-8748.2007.01.010

    WANG Y G, LI J Q, LI Y, et al.Characters and application prospects of near space flying vehicles[J].Spacecraft Engineering, 2007, 16(1):50-57(in Chinese). doi: 10.3969/j.issn.1673-8748.2007.01.010
    [2] 陶梦初, 何金海, 刘毅.平流层准零风层统计特征及准两年周期振荡对其影响分析[J].气候与环境研究, 2012, 17(1):92-102. doi: 10.3878/j.issn.1006-9585.2011.10087

    TAO M C, HE J H, LIU Y.Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of the quasi-biennial oscillation on it[J].Climatic and Environmental Research, 2012, 17(1):92-102(in Chinese). doi: 10.3878/j.issn.1006-9585.2011.10087
    [3] 李春霖, 罗蓉媛, 陈彤曦.平流层通信新思路-谷歌气球计划[J].通信技术, 2015, 48(2):125-129.

    LI C L, LUO R Y, CHEN T X.New idea for stratospheric communications-Google Loon[J].Communications Technology, 2015, 48(12):125-129(in Chinese).
    [4] ATHAR R, MATTHEWS T, LAVIGNE J, et al.Stratospheric C4ISR unmanned station (STRATACUS)[C]//AIAA Balloon Systems Conference.Reston: AIAA, 2017: 1-25.
    [5] 王艳奎.临近空间飞行器应用前景及发展分析[J].国防科技, 2009, 30(2):20-24.

    WANG Y K.An analysis on application prospects and development of near-space vehicles[J].National Defense Science & Technology, 2009, 30(2):20-24(in Chinese).
    [6] 常晓飞, 白云飞, 符文星, 等.基于平流层特殊风场的浮空器定点方案研究[J].西北工业大学学报, 2014, 32(1):12-17.

    CHANG X F, BAI Y F, FU W X, et al.Research on fixed-point aerostat based on its special stratosphere wind field[J].Journal of Northwestern Polytechnical, 2014, 32(1):12-17(in Chinese).
    [7] 陈兴权, 王解先, 谷川.基于主成分分析的BP神经网络在形变预测中的应用[J].大地测量与地球动力学, 2008, 28(3):72-76.

    CHEN X Q, WANG J X, GU C.Application of BP neural network based on principal component analysis in deformation forecasting[J].Journal of Geodesy and Geodynamics, 2008, 28(3):72-76(in Chinese).
    [8] HEIKKILÄ U, SHI X, PHIPPS S J, et al.10Be in late deglacial climate simulated by ECHAM5-HAM-Part 2:Isolating the solar signal from 10Be deposition[J].Climate of the Past Discussions, 2013, 9(5):5627-5657. doi: 10.5194/cpd-9-5627-2013
    [9] 杨晓亮, 徐建源, 林莘.主成分BP神经网络预测模型在风电场输出功率中的应用[C]//2010输变电年会论文集, 2010.

    YANG X L, XU J Y, LIN X.Application of principal component bp neural network prediction model to output power of wind farm[C]//2010 Annual Conference of Power Transmission and Transformation, 2010(in Chinese).
    [10] 范高锋, 王伟胜, 刘纯, 等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):118-123. doi: 10.3321/j.issn:0258-8013.2008.34.019

    FAN G F, WANG W S, LIU C, et al.Wind power prediction based on artificial neural network[J].Chinese Journal of Electrical Engineering, 2008, 28(34):118-123(in Chinese). doi: 10.3321/j.issn:0258-8013.2008.34.019
    [11] 农吉夫, 黄文宁.基于主成分分析的BP神经网络长期预报模型[J].广西师范学院学报(自然科学版), 2008, 25(4):46-51. doi: 10.3969/j.issn.1002-8743.2008.04.012

    NONG J F, HUANG W N.Long-term prediction model of BP neural networks based on principle component analysis[J].Journal of Guangxi Normal University(Natural Science Edition), 2008, 25(4):46-51(in Chinese). doi: 10.3969/j.issn.1002-8743.2008.04.012
    [12] 李春祥, 牛东晓, 孟丽敏.基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型[J].电网技术, 2009, 33(2):99-104.

    LI C X, NIU D X, MENG L M.A comprehensive model of medium and long term load forecasting based on analytic hierarchy process and radial basis function neural network[J].Power System Technology, 2009, 33(2):99-104(in Chinese).
    [13] 张明理, 杨晓亮, 滕云, 等.基于主成分分析与前向反馈传播神经网络的风电场输出功率预测[J].电网技术, 2011, 35(3):183-187.

    ZHANG M L, YANG X L, TENG Y, et al.Wind farm output power prediction based on principal component analysis and forward feedback propagation neural network[J].Power System Technology, 2011, 35(3):183-187(in Chinese).
    [14] 常晓飞, 尚妮妮, 符文星, 等.平流层浮空器快速部署平台的建模与仿真[J].宇航学报, 2014, 35(10):1135-1140. doi: 10.3873/j.issn.1000-1328.2014.10.005

    CHANG X F, SHANG N N, FU W X, et al.Modeling and simulation of rapid deployment system for stratospheric aerostat[J].Journal of Astronautics, 2014, 35(10):1135-1140(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.10.005
    [15] 吕明云, 巫资春.高空气球热力学模型与上升过程仿真分析[J].北京麻豆精品秘 国产传媒学报, 2011, 37(5):505-509.

    LV M Y, WU Z C.Thermodynamic model and numerical simulation of high altitude balloon ascending process[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5):505-509(in Chinese).
    [16] 苗景刚, 周江华, 杨新.动态过程的飞艇排气特性分析[J].宇航学报, 2016, 37(2):153-158. doi: 10.3873/j.issn.1000-1328.2016.02.003

    MIAO J G, ZHOU J H, YANG X.Analysis of airship exhaust characteristics in dynamic process[J].Journal of Astronautics, 2016, 37(2):153-158(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.02.003
    [17] 凡永华, 于云峰, 闫杰.高空飞艇高度控制系统设计及仿真[J].科学技术与工程, 2011, 11(24):5957-5961. doi: 10.3969/j.issn.1671-1815.2011.24.051

    FAN Y H, YU Y F, YAN J.High altitude airship altitude control system design and simulation[J].Science Technology and Engineering, 2011, 11(24):5957-5961(in Chinese). doi: 10.3969/j.issn.1671-1815.2011.24.051
  • 加载中
图(15)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  114
  • PDF下载量:  502
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 录用日期:  2018-11-08
  • 网络出版日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答