留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硬脂酸复合相变材料的被动热沉性能

赵亮 邢玉明 刘鑫 罗叶刚 芮州峰

赵亮, 邢玉明, 刘鑫, 等 . 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513
引用本文: 赵亮, 邢玉明, 刘鑫, 等 . 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513
ZHAO Liang, XING Yuming, LIU Xin, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513(in Chinese)
Citation: ZHAO Liang, XING Yuming, LIU Xin, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513(in Chinese)

基于硬脂酸复合相变材料的被动热沉性能

doi: 10.13700/j.bh.1001-5965.2018.0513
基金项目: 

航空科学基金 20172851018

详细信息
    作者简介:

    赵亮  男, 博士研究生。主要研究方向:固液相变温控技术

    邢玉明  男, 博士, 教授, 博士生导师。主要研究方向:相变储能技术、两相流分析

    通讯作者:

    邢玉明, E-mail:xym505@126.com

  • 中图分类号: TK11+4;V19

Performance of a passive heat sink using stearic acid based composite as phase change material

Funds: 

Aeronautical Science Foundation of China 20172851018

More Information
  • 摘要:

    固液相变储能材料的被动热沉广泛应用于航空航天及军事装备领域。针对高热流密度电子芯片的被动温控问题,对比实验验证了单温度和双温度2种数值模拟方法对基于泡沫铜/硬脂酸复合相变材料被动热沉控温过程模拟的准确性。结合基于Maxwell-Garnett模型的EMT建立了石墨烯纳米片/硬脂酸复合相变材料物性,采用更为精确的双温度数值模拟方法分析了不同导热强化方式的控温效果,并研究了环境温度对热沉控温效果的影响。结果表明:高热流密度下的相变温控过程采用双温度数值模拟更为精确;当导热增强体的体积组分相同时,提高泡沫金属的孔密度对相变温控效果提升有限,而同时采用泡沫金属与石墨烯纳米片能更有效改善相变控温效果;环境温度的剧烈变化对温控时间和控温温度均能产生影响。

     

  • 图 1  物理模型

    Figure 1.  Physical model

    图 2  硬脂酸的DSC测试结果

    Figure 2.  DSC measurement result of stearic acid

    图 3  实验系统示意图

    Figure 3.  Schematic diagram of experimental system

    图 4  测温点分布

    Figure 4.  Distribution of temperature measurement points

    图 5  不同热流下模拟芯片温升

    Figure 5.  Temperature rise of analogue chip at different heat fluxes

    图 6  不同热流下复合相变材料液相组分变化

    Figure 6.  Liquid phase fraction change of composite phase change materials at different heat fluxes

    图 7  不同PPI泡沫铜强化相变材料热沉的模拟芯片温升

    Figure 7.  Temperature rise of analogue chip with phase change materials based heat sink enhanced by different PPI copper foam

    图 8  不同复合相变材料热沉的模拟芯片温升

    Figure 8.  Temperature rise of film heater with different composite phase change materials based heat sink

    图 9  基于不同复合相变材料的热沉控温过程温度云图

    Figure 9.  Temperature contour of temperature control process of heat sinks based on different composite phase change materials

    图 10  不同复合相变材料的液相组分变化

    Figure 10.  Liquid phase fraction change of different composite phase change materials

    图 11  环境温度对模拟芯片温升的影响

    Figure 11.  Influence of ambient temperature on temperature rise of analogue chip

    表  1  材料物性参数

    Table  1.   Physical property parameters of materials

    参数 硬脂酸 GnP体积分数 泡沫铜 5052铝合金 GnP
    3% 5%
    ρ/(kg·m-3) 965 1 002.05 1 026.75 8 978 2 680 2 200
    k/(W·m-1·K-1) 0.172 0.998 6 1.526 455 387.6 156 3 500
    cp,solid/(kJ·kg-1·K-1) 2 830 2 764.39 2 293.15 381 947 0.643
    cp,liquid/(kJ·kg-1·K-1) 2 380 2 327.89 2 720.65
    Tm/℃ 68.77 68.77 68.77
    β/(10-6K-1) 2 000 1 940 1 900 -0.7
    μ/(kg·m-1·s-1) 0.008 0.010 89 0.013 6
    L/(kJ·kg-1) 212.2 205.834 201.59
    下载: 导出CSV
  • [1] AVCI M, YAZICI M Y.An experimental study on effect of inclination angle on the performance of a PCM-based flat-type heat sink[J].Applied Thermal Engineering, 2018, 131:806-814. doi: 10.1016/j.applthermaleng.2017.12.069
    [2] WANG Y J, LUO Q H, CHEN X M.Advanced electronic cooling technologies[C]//2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics.Piscataway, NJ: IEEE Press, 2010: 149-152.
    [3] LING Z Y, ZHANG Z G, SHI G Q, et al.Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J].Renewable & Sustainable Energy Reviews, 2014, 31(2):427-438.
    [4] MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al.A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J].Renewable & Sustainable Energy Reviews, 2017, 70:1072-1089.
    [5] IBRAHIM N I, AL-SULAIMAN F A, RAHMAN S, et al.Heat transfer enhancement of phase change materials for thermal energy storage applications:A critical review[J].Renewable & Sustainable Energy Reviews, 2017, 74:26-50.
    [6] ZALBA B, JOSE M A MARIN, CABEZA L F, et al.Review on thermal energy storage with phase change:Materials, heat transfer analysis and applications[J].Applied Thermal Engineering, 2003, 23(3):251-283. doi: 10.1016/S1359-4311(02)00192-8
    [7] BABY R, BALAJI C.Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling[J].International Journal of Heat & Mass Transfer, 2011, 55(5):1642-1649.
    [8] ARSHAD A, ALI H M, YAN W M, et al.An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material[J].Applied Thermal Engineering, 2018, 132:52-66. doi: 10.1016/j.applthermaleng.2017.12.066
    [9] LV Y F, SITU W F, YANG X Q, et al.A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management[J].Energy Conversion & Management, 2018, 163:250-259.
    [10] 迟蓬涛, 高红霞, 余建祖, 等.翅片-泡沫铜复合结构的导热增强作用[J].航空动力学报, 2012, 27(4):854-860.CHI P T, GAO H X, YU J Z, et al.Heat transfer enhancement of fin-copper foam composite structure[J].Journal of Aerospace Power, 2012, 27(4):854-860(in Chinese).
    [11] 施尚, 余建祖, 陈梦东, 等.基于泡沫铜/石蜡的锂电池热管理系统性能[J].化工学报, 2017, 68(7):2678-2683.SHI S, YU J Z, CHEN M D, et al.Battery thermal management system using phase change materials and foam copper[J].Journal of Chemical Industry and Engineering, 2017, 68(7):2678-2683(in Chinese).
    [12] LI T, WU D L, HE F, et al.Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J].International Journal of Heat and Mass Transfer, 2017, 115:148-157.
    [13] ALSHAER W G, NADA S A, RADY M A, et al.Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment[J].Energy Conversion & Management, 2015, 89:873-884.
    [14] WU W X, ZHANG G Q, KE X F, et al.Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J].Energy Conversion & Management, 2015, 101:278-284.
    [15] LI T, LEE J H, WANG R, et al.Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J].International Journal of Heat and Mass Transfer, 2014, 75:1-11. doi: 10.1016/j.ijheatmasstransfer.2014.03.054
    [16] LI T, LEE J H, WANG R, et al.Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J].Energy, 2013, 55:752-761. doi: 10.1016/j.energy.2013.04.010
    [17] AGYENIM F, HEWITT N, EAMES P, et al.A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J].Renewable & Sustainable Energy Reviews, 2010, 14(2):615-628.
    [18] SHARMA A, TYAGI V V, CHEN C R, et al.Review on thermal energy storage with phase change materials and applications[J].Renewable & Sustainable Energy Reviews, 2009, 13(2):318-345.
    [19] CUNHA J P D, EAMES P.Thermal energy storage for low and medium temperature applications using phase change materials-A review[J].Applied Energy, 2016, 177:227-238. doi: 10.1016/j.apenergy.2016.05.097
    [20] ZHENG H P, WANG C H, LIU Q M, et al.Thermal performance of copper foam/paraffin composite phase change material[J].Energy Conversion & Management, 2018, 157:372-381.
    [21] TIAN Y, ZHAO C Y.A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J].Energy, 2011, 36(9):5539-5546. doi: 10.1016/j.energy.2011.07.019
    [22] FENG S S, SHI M, LI Y F, et al.Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam[J].International Journal of Heat & Mass Transfer, 2015, 90:838-847.
    [23] HU X, PATNAIK S S.Modeling phase change material in micro-foam under constant temperature condition[J].International Journal of Heat & Mass Transfer, 2014, 68(1):677-682.
    [24] ZHANG P, MENG Z N, ZHU H, et al.Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J].Applied Energy, 2015, 182:1971-1983
    [25] FANG X, FAN L W, DING Q, et al.Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J].Energy & Fuels, 2013, 27(7):4041-4047.
    [26] KHODADADI J M, FAN L, BABAEI H.Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage:A review[J].Renewable & Sustainable Energy Reviews, 2013, 24(10):418-444.
    [27] HARISH S, OREJON D, TAKATA Y, et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J].Applied Thermal Engineering, 2015, 80:205-211. doi: 10.1016/j.applthermaleng.2015.01.056
    [28] DAS N, KOHNO M, TAKATA Y, et al.Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system[J].Applied Thermal Engineering, 2017, 125:880-890. doi: 10.1016/j.applthermaleng.2017.07.084
    [29] KRIEGER I M, DOUGHERTY T J.A mechanism for non-newtonian flow in suspensions of rigid spheres[J].Journal of Rheology, 1959, 3(1):137-152.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  803
  • HTML全文浏览量:  89
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 录用日期:  2018-11-30
  • 网络出版日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答