留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双端异步DoS攻击下基于数模联动的ICPS多模态综合安全控制

李亚洁 李钢 李炜 路晨静

李亚洁,李钢,李炜,等. 双端异步DoS攻击下基于数模联动的ICPS多模态综合安全控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3354-3367 doi: 10.13700/j.bh.1001-5965.2024.0818
引用本文: 李亚洁,李钢,李炜,等. 双端异步DoS攻击下基于数模联动的ICPS多模态综合安全控制[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3354-3367 doi: 10.13700/j.bh.1001-5965.2024.0818
LI Y J,LI G,LI W,et al. ICPS multi-modal integrated security control based on data-model linkage under dual-end asynchronous DoS attacks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3354-3367 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0818
Citation: LI Y J,LI G,LI W,et al. ICPS multi-modal integrated security control based on data-model linkage under dual-end asynchronous DoS attacks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3354-3367 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0818

双端异步DoS攻击下基于数模联动的ICPS多模态综合安全控制

doi: 10.13700/j.bh.1001-5965.2024.0818
基金项目: 

国家自然科学基金(62163022);甘肃省科技重大专项计划(23ZDGA007);甘肃省产业支撑计划项目(2024CYZC-18);甘肃省联合科研基金项目(24JRRA827);兰州市科技计划项目(2024-2-5)

详细信息
    通讯作者:

    E-mail:liwei@lut.edu.cn

  • 中图分类号: TP277

ICPS multi-modal integrated security control based on data-model linkage under dual-end asynchronous DoS attacks

Funds: 

National Natural Science Foundation of China (62163022); Major Science and Technology Special Project of Gansu Province in China (23ZDGA007); Industrial support plan project of Gansu Province in China (2024CYZC-18); Joint Research Fund Project of Gansu Province in China (24JRRA827); Science and Technology Plan Project of Lanzhou City in China (2024-2-5)

More Information
  • 摘要:

    针对一类双端异步拒绝服务(DoS)攻击与执行器故障共存的工业信息物理系统(ICPS),通过将数据驱动技术与模型机理解析方法相融合,对多模态综合安全控制与通讯间的协同设计问题进行研究。设计一种触发阈值可随系统行为动态变化的自适应离散事件触发通讯机制(ADETCS),并构建可同时抵御双端异步DoS攻击与执行器故障的ICPS多模态综合安全控制架构;针对不同能量等级的DoS攻击,采用“分而治之”的思想,借助长短期记忆(LSTM)网络与弹性控制方法,提出基于数模联动的主-被动协同混合容侵策略。基于Lyapunov稳定性理论进行观测器与控制器的推证,进而采用K-Means++聚类算法及模糊融合方法,在线对不同模态下的控制器进行加权融合,实现不同控制模态间的软切换;通过四容水箱实例,验证了双端异步DoS攻击下基于数模联动的多模态综合安全控制方法的正确性。实验结果表明:数模联动的方法增强了ICPS抵御双端异步DoS攻击的能力,多模态综合安全控制器的设计实现了控制模态与ADETCS间的双向自适应协同控制。

     

  • 图 1  基于ADETCS的双端异步DoS攻击下ICPS多模态综合安全控制架构

    Figure 1.  ICPS multi-modal integrated security control architecture under double-ended asynchronous DoS attacks based on ADETCS

    图 2  双端异步DoS攻击下数据传输时序图

    Figure 2.  Timing diagram of data transmission under double-ended asynchronous DoS attack

    图 3  基于LSTM网络的重构误差

    Figure 3.  Reconstruction error based on LSTM networks

    图 4  基于PD的重构误差

    Figure 4.  Reconstruction error based on PD

    图 5  手肘法

    Figure 5.  Elbow method

    图 6  轮廓系数法

    Figure 6.  Contour coefficient method

    图 7  基于K-Means++的聚类结果

    Figure 7.  Plot of clustering results based on K-Means++

    图 8  系统状态估计误差

    Figure 8.  Estimation error of system state

    图 9  执行器故障估计误差

    Figure 9.  Estimation error of actuator failure

    图 10  输入输出的隶属度函数曲线

    Figure 10.  Membership function curves of input and output

    图 11  多/单模态控制器下的系统输出

    Figure 11.  System output under multimodal/unimodal controllers

    图 12  事件触发参数的变化曲线

    Figure 12.  Curve of changes in event triggered parameters

    表  1  不同控制模态下的参数

    Table  1.   Parameters under different control modes

    模态$ \bar \sigma ({t_k}h) $聚类中心$ {e_y} $聚类中心$ \bar \sigma ({t_k}h) $范围$ {e_y} $范围
    $ {C_1} $0.0040.0019(0.0035,0.004)(0,0.005)
    $ {C_2} $0.0030.0069(0.0023,0.0035)(0.005,0.0097)
    $ {C_3} $0.00160.00234(0.001,0.0023)(0.0097,0.36)
    下载: 导出CSV

    表  2  模糊规则

    Table  2.   Fuzzy rules

    $\sigma ({t_k}h)$ $\Delta \bar {\boldsymbol y}({j_k})$
    D Z X
    D D/D D/Z D/X
    Z Z/D Z/Z Z/X
    X X/D X/Z X/X
    下载: 导出CSV

    表  3  不同触发机通讯制下数据传输量的比较

    Table  3.   Comparison of data transmission under different trigger machine communication systems

    触发机制 数据传输量 传输周期/s
    DETCS[21] 4201 0.191
    ADETCS[23] 3985 0.208
    本文ADETCS 3751 0.213
    下载: 导出CSV
  • [1] WU Y Y, ZHANG L W, XIE W, et al. Robust mixed H2/H model predictive control for cyber-physical systems with input saturation and energy-bounded disturbance[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8328-8337. doi: 10.1109/TII.2024.3372036
    [2] 薛威峰, 孙子文. 数据注入攻击下ICPS的自适应事件触发弹性控制[J]. 控制理论与应用, 2024, 41(5): 866-874. doi: 10.7641/CTA.2023.20774

    XUE W F, SUN Z W. Adaptive event triggered resilient control of ICPS under data injection attack[J]. Control Theory & Applications, 2024, 41(5): 866-874(in Chinese). doi: 10.7641/CTA.2023.20774
    [3] JI Z D, CHEN C L, HE J P, et al. Edge sensing and control co-design for industrial cyber-physical systems: observability guaranteed method[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 13350-13362. doi: 10.1109/TCYB.2021.3079149
    [4] ZUO F L, LUO Z X, YU J Z, et al. Vulnerability detection of ICS protocols via cross-state fuzzing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 4457-4468. doi: 10.1109/TCAD.2022.3201471
    [5] 梁宏, 刘佳男, 李勇. “火焰” 病毒分析与防范[J]. 信息网络安全, 2012, 12(8): 157-159.

    LIANG H, LIU J N, LI Y. Analysis and protection of flame virus[J]. Netinfo Security, 2012, 12(8): 157-159(in Chinese).
    [6] YANG H Q, LI T S, LONG Y, et al. Event-triggered distributed secondary control with model-free predictive compensation in AC/DC networked microgrids under DoS attacks[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 298-307. doi: 10.1109/TCYB.2022.3218026
    [7] YANG F S, LIANG X H, GUAN X H. Resilient distributed economic dispatch of a cyber-power system under DoS attack[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(1): 40-50.
    [8] 彭大天, 董建敏, 蔡忠闽, 等. 假数据注入攻击下信息物理融合系统的稳定性研究[J]. 自动化学报, 2019, 45(1): 196-205.

    PENG D T, DONG J M, CAI Z M, et al. On the stability of cyber-physical systems under false data injection attacks[J]. Acta Automatica Sinica, 2019, 45(1): 196-205(in Chinese).
    [9] GONG Z Y, YANG F S. Secure tracking control via fixed-time convergent reinforcement learning for a UAV CPS[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(7): 1699-1701. doi: 10.1109/JAS.2023.124149
    [10] 张正道, 杨佳佳, 谢林柏. 基于辅助信息补偿和控制信号编码的重放攻击检测方法[J]. 自动化学报, 2023, 49(7): 1508-1518.

    ZHANG Z D, YANG J J, XIE L B. Replay attack detection method based on auxiliary information compensation and control signal coding[J]. Acta Automatica Sinica, 2023, 49(7): 1508-1518 (in Chinese).
    [11] 杨中林, 魏自航, 林相泽. 线性系统的事件触发输出反馈有限时间有界控制[J]. 控制理论与应用, 2022, 39, (8): 1497-1505.

    YANG Z L, WEI Z H, LIN X Z. Event-triggered output feedback finite-time bounded control of linear systems[J]. Control Theory and Applications, 2022, 39, (8): 1497-1505(in Chinese).
    [12] 陈烁, 樊渊. 基于采样的线性不确定系统事件触发控制[J]. 控制工程, 2021, 28(5): 999-1004.

    CHEN S, FAN Y. Sampling-based event-triggered control for linear uncertain systems[J]. Control Engineering of China, 2021, 28(5): 999-1004(in Chinese).
    [13] HUANG S, ZONG G D, XU N, et al. Adaptive dynamic surface control of MIMO nonlinear systems: a hybrid event triggering mechanism[J]. International Journal of Adaptive Control and Signal Processing, 2024, 38(2): 437-454. doi: 10.1002/acs.3708
    [14] ZHAO C H, SHEN Y J, PANG H X. Adaptive output-feedback control for switched nonlinear systems with measurement sensitivity based on double-side event-triggering mechanisms[J]. International Journal of Systems Science, 2024, 55(11): 2349-2372. doi: 10.1080/00207721.2024.2344036
    [15] FRIDMAN E. A refined input delay approach to sampled-data control[J]. Automatica, 2010, 46(2): 421-427. doi: 10.1016/j.automatica.2009.11.017
    [16] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
    [17] ZHANG X M, HAN Q L, SEURET A, et al. Overview of recent advances in stability of linear systems with time-varying delays[J]. IET Control Theory & Applications, 2019, 13(1): 1-16.
    [18] ZHANG X M, HAN Q L. Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach[J]. Neural Networks, 2014, 54: 57-69. doi: 10.1016/j.neunet.2014.02.012
    [19] ARTHUR D,VASSILVITSKII S.K-means++: the advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms.New York: ACM, 2007:1027-1035.
    [20] 邱爱兵, 吉虹钢, 顾菊平. 非均匀采样数据系统时变故障估计与调节最优集成设计[J]. 自动化学报, 2014, 40(7): 1493-1504.

    QIU A B, JI H G, GU J P. Optimal integrated design of time-varying fault estimation and accommodation for nonuniformly sampled data systems[J]. Acta Automatica Sinica, 2014, 40(7): 1493-1504(in Chinese).
    [21] 李炜, 韩小武, 李亚洁. 基于DoS攻击能量分级的ICPS综合安全控制与通信协同设计[J]. 信息与控制, 2022, 51(3): 257-270.

    LI W, HAN X W, LI Y J. Co-design of integrated security control and communication of ICPS based on DoS attack energy classification[J]. Information and Control, 2022, 51(3): 257-270(in Chinese).
    [22] 程雪. ADETCS下ICPS多模态综合安全控制与通讯协同设计[D]. 兰州: 兰州理工大学, 2023: 42-50.

    CHENG X. Collaborative design of multimodal integrated safety control and communication of ICPS under ADETCS[D]. Lanzhou: Lanzhou University of Technology, 2023: 42-50(in Chinese).
    [23] PENG C, ZHANG J, YAN H. Adaptive event-triggering load frequency control for network-based power system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 1685-1694. doi: 10.1109/TCYB.2017.2659698
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-15
  • 录用日期:  2025-04-11
  • 网络出版日期:  2025-05-14
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答