留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑双时间窗特性的机场多车型摆渡车调度优化

张文义 唐雨拉尔 王旭兰 周静 边可 刘志硕

张文义,唐雨拉尔,王旭兰,等. 考虑双时间窗特性的机场多车型摆渡车调度优化[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3345-3353 doi: 10.13700/j.bh.1001-5965.2023.0579
引用本文: 张文义,唐雨拉尔,王旭兰,等. 考虑双时间窗特性的机场多车型摆渡车调度优化[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3345-3353 doi: 10.13700/j.bh.1001-5965.2023.0579
ZHANG W Y,TANG Y L E,WANG X L,et al. Optimization of multi-type airport ferry vehicles schedules with double service time windows characteristic[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3345-3353 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0579
Citation: ZHANG W Y,TANG Y L E,WANG X L,et al. Optimization of multi-type airport ferry vehicles schedules with double service time windows characteristic[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3345-3353 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0579

考虑双时间窗特性的机场多车型摆渡车调度优化

doi: 10.13700/j.bh.1001-5965.2023.0579
基金项目: 

国家自然科学基金(72271018); 北京首都国际机场股份有限公司资助项目(T20L00690)

详细信息
    通讯作者:

    E-mail:zhsliu@bjtu.edu.cn

  • 中图分类号: U268.6

Optimization of multi-type airport ferry vehicles schedules with double service time windows characteristic

Funds: 

National Natural Science Foundation of China (72271018);Research Foundation of Beijing Captial International Airport Co., Ltd. (T20L00690)

More Information
  • 摘要:

    为提升摆渡车运行的灵活性、增强车辆调度方案的能效和实践可操作性,综合考虑多车型和机场摆渡车运输服务的双时间窗特性,从任务点视角构建机场摆渡车调度问题的混合整数线性规划模型。该模型可视为一个考虑多车型和双时间窗且需求可拆分的车辆路径问题,是一个复杂的NP-hard问题,为此,提出一种改进的自适应大邻域搜索(ALNS)算法。以北京首都国际机场东飞行区为背景的案例仿真结果表明:所提算法具有良好的稳定性和优化效果,200次迭代下10轮次计算实验结果的标准差与平均值之比仅为5.6%,优化前后对应的最优目标函数值下降达54%;多车型调度方案显著优于人工和单一车型调度方案,在车辆容量利用能效上较人工、大车型和小车型方案分别提升了98.3%、31.3%和22.2%,在运行总成本上较人工、大车型和小车型方案则分别下降了48.3%、23.4%和23.5%。

     

  • 图 1  本文摆渡车调度问题示例

    Figure 1.  An illustrative example for the ferry vehicle scheduling problem

    图 2  本文算法流程

    Figure 2.  Flow of the proposed algorithm

    图 3  首都机场东区远机位分布与摆渡路线

    Figure 3.  Layout and running routes of far stands in eastern airfield of BCIA

    图 4  不同终止迭代次数下的实验结果统计(左列)与最优目标函数值下降过程(右列)

    Figure 4.  Experimental result statistics (left column) and evolution of optimal objective function values (right column) under different iterative tolerances

    图 5  不同调度方案的满载率热力图

    Figure 5.  Thermodynamic chart of vehicle full-load ratios for different scheduling strategies

    表  1  不同调度方案的计算结果

    Table  1.   Results between different scheduling schemes

    调度方案 用车数量/辆 用车成本/
    行驶费用/
    总成本/
    大车 小车
    人工调度 9 13500 656 14156
    单一大车型调度 6 9000 546 9546
    单一小车型调度 11 8800 750 9550
    多车型联合调度 3 3 6900 410 7310
    下载: 导出CSV

    表  2  多车型调度方案与其他3种方案的结果对比

    Table  2.   Results comparison between multi-type vehicle scheduling schemes and other three schemes

    对比调度策略 改进幅度/%
    用车成本 行驶费用 总成本
    人工调度 48.9 37.5 48.3
    单一大车型调度 23.3 24.9 23.4
    单一小车型调度 21.6 45.3 23.5
    下载: 导出CSV

    表  3  不同调度方案的车辆利用能效对比

    Table  3.   Vehicle utilization efficiency comparison between different scheduling schemes

    调度方式 车辆总体平均
    满载率/%
    车辆平均容量服务率/
    (人·单位容量−1
    大车 小车 总体
    人工调度 82.05 7.17 7.17
    单一大车型调度 82.05 10.83 10.83
    单一小车型调度 90.78 11.64 11.64
    多车型联合调度 90.78 18.33 10.33 14.22
    下载: 导出CSV
  • [1] KUHN K, LOTH S. Airport service vehicle scheduling[J]. Air Traffic Control Quarterly, 2010, 18(1): 63-83. doi: 10.2514/atcq.18.1.63
    [2] 杨文东, 陶婧婧, 贾玉平. 机坪摆渡车实时调度系统仿真[J]. 南京麻豆精品秘 国产传媒学报, 2013, 45(6): 854-858.

    YANG W D, TAO J J, JIA Y P. Simulation of real-time scheduling of airport ferry bus[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(6): 854-858(in Chinese).
    [3] 冯霞, 任子云. 基于遗传算法的加油车和摆渡车协同调度研究[J]. 交通运输系统工程与信息, 2016, 16(2): 155-163.

    FENG X, REN Z Y. Collaborative scheduling of fuelling vehicle and ferry vehicle based on genetic algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 155-163(in Chinese).
    [4] 何丹妮. 大型机场航班过站地面服务车辆调度问题研究: 以摆渡车为例[D]. 北京: 北京交通大学, 2018.

    HE D N. Research on the scheduling problem of ground service vehicles for large airport flights: taking car ferry as an example[D]. Beijing: Beijing Jiaotong University, 2018(in Chinese).
    [5] HAN X, ZHAO P X, MENG Q C, et al. Optimal scheduling of airport ferry vehicles based on capacity network[J]. Annals of Operations Research, 2020, 295(1): 163-182. doi: 10.1007/s10479-020-03743-0
    [6] ZHAO P X, HAN X, WAN D. Evaluation of the airport ferry vehicle scheduling based on network maximum flow model[J]. Omega, 2021, 99: 102178. doi: 10.1016/j.omega.2019.102178
    [7] HAN X, ZHAO P X, KONG D X. A bi-objective optimization of airport ferry vehicle scheduling based on heuristic algorithm: a real data case study[J]. Advances in Production Engineering & Management, 2022, 17(2): 183-192.
    [8] LIU Y H, WU J J, TANG J, et al. Scheduling optimisation of multi-type special vehicles in an airport[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 954-970. doi: 10.1080/21680566.2021.1983484
    [9] ZHU S R, SUN H J, GUO X. Cooperative scheduling optimization for ground-handling vehicles by considering flights’ uncertainty[J]. Computers & Industrial Engineering, 2022, 169: 108092.
    [10] 冯明端, 肖雪, 周航. 机场地面保障多车型车辆联合调度模型研究[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(1): 67-72.

    FENG M D, XIAO X, ZHOU H. Research on the multi-type joint scheduling model of airport ground support vehicles[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2023, 47(1): 67-72(in Chinese).
    [11] HAN X, ZHAO P X, KONG D X. Two-stage optimization of airport ferry service delay considering flight uncertainty[J]. European Journal of Operational Research, 2023, 307(3): 1103-1116. doi: 10.1016/j.ejor.2022.09.023
    [12] BAO D W, ZHOU J Y, ZHANG Z Q, et al. Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification[J]. Journal of Air Transport Management, 2023, 108: 102379. doi: 10.1016/j.jairtraman.2023.102379
    [13] BRÄYSY O, GENDREAU M. Vehicle routing problem with time windows, part I: route construction and local search algorithms[J]. Transportation Science, 2005, 39(1): 104-118. doi: 10.1287/trsc.1030.0056
    [14] 中国民用航空局. 航班安全运行保障标准: 民航发〔2020〕4号[S]. 北京: 中国民用航空局, 2020.

    Civil Aviation Administration of China. Flight safety operation guarantee standards: CAAC〔2020〕No. 4[S]. Beijing: Civil Aviation Administration of China, 2020(in Chinese).
    [15] ROPKE S, PISINGER D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4): 455-472. doi: 10.1287/trsc.1050.0135
    [16] WINDRAS MARA S T, NORCAHYO R, JODIAWAN P, et al. A survey of adaptive large neighborhood search algorithms and applications[J]. Computers & Operations Research, 2022, 146: 105903.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  132
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 录用日期:  2023-10-13
  • 网络出版日期:  2023-11-06
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答