留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向点融合运行的多航空器低碳轨迹协同规划

王超 李雯清 孙石磊 徐晨洋

王超,李雯清,孙石磊,等. 面向点融合运行的多航空器低碳轨迹协同规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3253-3261 doi: 10.13700/j.bh.1001-5965.2023.0575
引用本文: 王超,李雯清,孙石磊,等. 面向点融合运行的多航空器低碳轨迹协同规划[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3253-3261 doi: 10.13700/j.bh.1001-5965.2023.0575
WANG C,LI W Q,SUN S L,et al. Multi-aircraft low-carbon trajectories cooperative planning for point merge operation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3253-3261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0575
Citation: WANG C,LI W Q,SUN S L,et al. Multi-aircraft low-carbon trajectories cooperative planning for point merge operation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3253-3261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0575

面向点融合运行的多航空器低碳轨迹协同规划

doi: 10.13700/j.bh.1001-5965.2023.0575
基金项目: 

天津市应用基础研究多元投入基金重点项目(21JCZDJC00780)

详细信息
    通讯作者:

    E-mail:wangch@cauc.edu.cn

  • 中图分类号: V355

Multi-aircraft low-carbon trajectories cooperative planning for point merge operation

Funds: 

Key Project of Applied Basic Research Multi-Investment Fund of Tianjin Municipal (21JCZDJC00780)

More Information
  • 摘要:

    为解决在高交通密度终端区实施连续下降运行(CDO)的技术难题,提出一种面向点融合系统(PMS)的多航空器低碳轨迹协同规划方法。分析了基于管制员人工决策的点融合运行的额外碳排放产生机理;以个体航空器低碳4D轨迹为研究对象,建立了一种考虑PMS平飞弧段的CDO多阶段最优控制模型;以总体运行时间最小为目标,考虑进场交通流冲突约束,建立了多航空器CDO 4D轨迹协同规划模型。以实际PMS及航迹数据为例开展验证实验,结果表明:所提方法共减少12.2%的空中飞行时间,降低15.7%的燃油消耗和CO2排放,不仅能给出支持高效运行的航空器排序结果,还能提供达成该排序的可行低碳4D轨迹。

     

  • 图 1  点融合系统

    Figure 1.  Point merge system

    图 2  点融合系统的CDO程序

    Figure 2.  CDO pattern of PMS

    图 3  水平备选进场航线生成过程

    Figure 3.  Horizontal alternative arrival route generation process

    图 4  1号点融合系统的水平备选航线

    Figure 4.  Horizontal alternative routes of No.1 PMS

    图 5  A320机型的实际和优化后垂直剖面

    Figure 5.  Actual and optimized vertical profile of A320

    图 6  校正空速与下滑角

    Figure 6.  Calibrate air speed and flight path angle

    图 7  规划后28架进场航空器轨迹时空图

    Figure 7.  Time space diagram of planned trajectory of 28 arrival aircraft

    图 8  实际与优化后水平轨迹对比

    Figure 8.  Comparison between actual and optimized horizontal trajectory

    图 9  实际与优化后垂直剖面对比

    Figure 9.  Comparison between actual and optimized vertical profile

    表  1  实际与优化后CO2排放和飞行时间

    Table  1.   Actual and optimized CO2 emissions and flight time

    航线 飞行时间/s 燃油消耗/kg CO2排放/kg
    实际航线 1 835 249.14 784.79
    j=6 1350 162.72 512.50
    j=7 1440 177.02 557.61
    j=8 1530 191.32 602.66
    j=9 1620 205.62 647.70
    j=10 1710 219.92 692.75
    j=11 1800 234.22 737.79
    下载: 导出CSV

    表  2  28个航班初始信息

    Table  2.   Initial conditions of 28 flights

    航空器编号i机型进场方向进场
    时刻
    进场
    高度/m
    进场
    速度/kn
    航空器编号i机型进场方向进场
    时刻
    进场
    高度/m
    进场
    速度/kn
    1A321MATNU11:01480025015A321AND&BK11:587200310
    2B737MATNU11:07480027016A319AND&BK12:007500300
    3A320AND&BK11:07750028017A321AND&BK12:017500300
    4B787MATNU11:08510026018A319MATNU12:025400300
    5A330MATNU11:17540030019A320AND&BK12:106900300
    6A330AND&BK11:19720032020A321AND&BK12:156900260
    7B777AND&BK11:20600027021B737MATNU12:225400260
    8A320AND&BK11:36660026022B737AND&BK12:277200300
    9A321AND&BK11:38690028023A330MATNU12:315100270
    10A320AND&BK11:38750032024A320MATNU12:435400280
    11A321AND&BK11:48720031025A320MATNU12:465100300
    12B787MATNU11:48480026026A321MATNU12:555100240
    13B737AND&BK11:50660027027A320MATNU12:595400290
    14A320MATNU11:55510024028A320AND&BK13:007200320
    下载: 导出CSV
  • [1] ICAO. Continuous descent operations (CDO) manual: Doc 9931[S]. Montréal: ICAO, 2010: 21-36.
    [2] PARK S G, CLARKE J P. Optimal control based vertical trajectory determination for continuous descent arrival procedures[J]. Journal of Aircraft, 2015, 52(5): 1469-1480. doi: 10.2514/1.C032967
    [3] DE OLIVEIRA R F, BÜSKENS D C. Benefits of optimal flight planning on noise and emissions abatement at the Frankfurt Airport: AIAA 2012-4482[R]. Reston: AIAA, 2012.
    [4] ELLERBROEK J, INAAD M, HOEKSTRA J. Fuel and emission benefits for continuous descent approaches at schiphol[C]//Proceedings of the International Conference on Research in Air Transportation. Nice: ICRAT, 2018: 2-9.
    [5] SOLAK S, CHEN H. Optimal metering point configurations for optimized profile descent based arrival operations at airports[J]. Transportation Science, 2018, 52(1): 150-170. doi: 10.1287/trsc.2017.0788
    [6] PAWEŁEK A, LICHOTA P, DALMAU R, et al. Fuel-efficient trajectories traffic synchronization[J]. Journal of Aircraft, 2019, 56(2): 481-492. doi: 10.2514/1.C034730
    [7] 吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(增刊1): 277-282.

    LU B, WANG C. Application of improved extended Kalman filtering in aircraft 4D trajectory prediction algorithm[J]. Journal of Computer Applications, 2021, 41(Sup 1): 277-282(in Chinese).
    [8] TORATANI D. Application of merging optimization to an arrival manager algorithm considering trajectory-based operations[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 40-59. doi: 10.1016/j.trc.2019.09.015
    [9] DAHLBERG J, GRANBERG T A, POLISHCHUK T, et al. Capacity-driven automatic design of dynamic aircraft arrival routes[C]//Proceedings of the IEEE/AIAA 37th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2018: 1-9.
    [10] GUI D D, LE M L, HUANG Z C, et al. Optimal aircraft arrival scheduling with continuous descent operations in busy terminal maneuvering areas[J]. Journal of Air Transport Management, 2023, 107: 102344. doi: 10.1016/j.jairtraman.2022.102344
    [11] SÁEZ R, PRATS X, POLISHCHUK T, et al. Traffic synchronization in terminal airspace to enable continuous descent operations in trombone sequencing and merging procedures: an implementation study for Frankfurt Airport[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102875. doi: 10.1016/j.trc.2020.102875
    [12] SÁEZ R, POLISHCHUK T, SCHMIDT C, et al. Automated sequencing and merging with dynamic aircraft arrival routes and speed management for continuous descent operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103402. doi: 10.1016/j.trc.2021.103402
    [13] LIANG M, DELAHAYE D, MARÉCHAL P. Integrated sequencing and merging aircraft to parallel runways with automated conflict resolution and advanced avionics capabilities[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 268-291. doi: 10.1016/j.trc.2017.09.012
    [14] 张军峰, 游录宝, 周铭, 等. 基于点融合系统的多目标进场排序与调度[J]. 北京麻豆精品秘 国产传媒学报, 2023, 49(1): 66-73.

    ZHANG J F, YOU L B, ZHOU M, et al. Multi-objective arrival sequencing and scheduling based on point merge system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 66-73(in Chinese).
    [15] 杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 324157.

    YANG L, LI W B, LIU F Z, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324157(in Chinese).
    [16] ICAO. Carbon emissions calculator methodology: Version 11[S]. Montréal: ICAO, 2014: 6-7.
    [17] EUROCONTROL. User manual for the base of aircraft data (BADA): Revision 3.6[S]. Belgium: EUROCONTROL Experimental Centre, 2004: 6-33.
    [18] ICAO. Manual on airspace planning methodology for the determination of separation minima: Doc 9689-AN/953[S]. Montréal: ICAO, 1998: 55-60.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  98
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-07
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-22
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答