留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点阵结构散热特性及其轻量化评价

胡建军 窦若尘 张欣 姚静 孔祥东

胡建军,窦若尘,张欣,等. 点阵结构散热特性及其轻量化评价[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3299-3306 doi: 10.13700/j.bh.1001-5965.2023.0572
引用本文: 胡建军,窦若尘,张欣,等. 点阵结构散热特性及其轻量化评价[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3299-3306 doi: 10.13700/j.bh.1001-5965.2023.0572
HU J J,DOU R C,ZHANG X,et al. Heat dissipation characteristics and lightweight evaluation of lattice structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3299-3306 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0572
Citation: HU J J,DOU R C,ZHANG X,et al. Heat dissipation characteristics and lightweight evaluation of lattice structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3299-3306 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0572

点阵结构散热特性及其轻量化评价

doi: 10.13700/j.bh.1001-5965.2023.0572
基金项目: 

国家自然科学基金重大项目(51890881);河北省自然科学基金(2020203028);中央引导地方科技发展资金项目(226Z1902G)

详细信息
    通讯作者:

    E-mail:kewei729@163.com

  • 中图分类号: TH122;TK124

Heat dissipation characteristics and lightweight evaluation of lattice structure

Funds: 

The General Program (Major Research Plan) of National Natural Science Foundation of China (51890881); Natural Science Foundation of Hebei Province (2020203028); Central Guiding Local Science and Technology Development Fund Projects (226Z1902G)

More Information
  • 摘要:

    航空电静液驱动执行器(EHA)作为航空舵面控制的核心部件,对高功重比的追求要求对其部件进行高效散热与轻量化综合设计。基于此,通过实验方法对4种典型轻量化点阵结构的散热特性进行研究,得到了不同点阵散热模块的温度分布特性,为点阵结构散热与轻量化性能评价提供可靠数据。针对点阵结构散热特性,提出点阵结构散热轻量化系数评价指标,用以定量评估不同散热点阵结构的轻量化特性。根据构建的评价指标对4种点阵结构进行评价,结果表明:OT点阵结构散热性能与轻量化综合特性最优。与翅片结构相比,OT点阵结构散热系数为翅片的1.2倍,但其散热轻量化系数仅约为翅片的1/3。研究结果为综合考虑散热和轻量化要求的点阵结构筛取提供了参考。

     

  • 图 1  4种正六面体点阵胞元

    Figure 1.  Four kinds of regular hexahedral lattice cells

    图 2  立方体点阵散热模块模型

    Figure 2.  Cube lattice heat dissipation module model

    图 3  散热模块3D打印实物图

    Figure 3.  3D printed physical drawing of heat dissipation structure

    图 4  点阵结构散热性能实验系统原理

    Figure 4.  Schematic diagram of lattice structure heat dissipation characteristic experiment system

    图 5  点阵结构散热性能实验台

    ①. 风机;②. 通风管道;③. 保温棉;④. 加热板壳体;⑤. 安捷伦数据采集仪;⑥. 调压器;⑦. 万用表。

    Figure 5.  Lattice structure heat dissipation characteristic experiment bench

    图 6  主要实验段结构示意图

    ①. 加热板壳体;②. 泡沫保温板;③. 加热板;④. 点阵散热板; ⑤. 整流板;⑥. 通风管道。

    Figure 6.  Structural diagram of main experimental sections

    图 7  点阵结构散热性能实验数据采集系统

    Figure 7.  Data acquisition system for lattice structure heat dissipation characteristic experiment

    图 8  点阵底板温度随时间变化情况

    Figure 8.  Temperature change of lattice bottom plate with time

    图 9  点阵底板不同方向稳态温度分布情况

    Figure 9.  Steady state temperature distribution of lattice bottom plate in different directions

    图 10  热阻随风速变化情况

    Figure 10.  Thermal resistance changes with wind speed

    图 11  点阵结构散热性能及轻量化特性随杆径变化

    Figure 11.  Heat dissipation performance and lightweight characteristics of lattice structure change with rod diameter

    图 12  不同类型点阵结构散热性能及轻量化特性

    Figure 12.  Heat dissipation performance and lightweight characteristics of different types of lattice structure

    表  1  点阵结构散热性能实验工况

    Table  1.   Working condition of lattice structure heat dissipation characteristic experiment

    分组 出口风速/(m·s−1) 加热功率/W 杆径/mm 点阵类型
    第1组 5 35 1.5 立方体点阵
    5 35 1.5 体心点阵
    5 35 1.5 面心点阵
    5 35 1.5 OT点阵
    5 35 3(翅厚) 翅片
    第2组 5 35 0.5 OT点阵
    5 35 1 OT点阵
    5 35 1.5 OT点阵
    第3组 1 35 1.5 OT点阵
    3 35 1.5 OT点阵
    5 35 1.5 OT点阵
    下载: 导出CSV

    表  2  测量仪器型号及参数

    Table  2.   Measuring instrument model and parameters

    设备 型号 参数
    安捷伦数据采集仪 34972A 精度:0.004%
    欧米伽热线风速计 HHF-SD1 工作温度0~50 ℃;分辨率:0.1 ℃;精度:0.8 ℃
    数字万用表 Fluke 101 精度:±(1%+1)
    热电偶 K-Type 测温范围:−200~260 ℃;精度:0.75%
    下载: 导出CSV
  • [1] 许巍, 赵俊伟, 袁本立, 等. 飞行器热防护与利用一体化系统实验与模拟[J]. 航空动力学报, 2022, 37(3): 555-563.

    XU W, ZHAO J W, YUAN B L, et al. Experiment and simulation on aircraft thermal protection and utilization integrated system[J]. Journal of Aerospace Power, 2022, 37(3): 555-563(in Chinese).
    [2] 朱喜华, 李颖晖, 刘聪, 等. 基于自适应核主元分析的EHA系统传感器故障检测[J]. 推进技术, 2014, 35(6): 838-845.

    ZHU X H, LI Y H, LIU C, et al. Sensor fault detection for EHA system based on adaptive kernel principal component analysis[J]. Journal of Propulsion Technology, 2014, 35(6): 838-845(in Chinese).
    [3] 李永欣, 郭长春, 李凯伦, 等. SLM制备的小长径比四棱锥点阵填充轻量化研究[J]. 机械工程学报, 2021, 57(24): 132-138. doi: 10.3901/JME.2021.24.132

    LI Y X, GUO C C, LI K L, et al. Filling lightweight research on pyramid lattice with small slenderness ratio fabricated by SLM[J]. Journal of Mechanical Engineering, 2021, 57(24): 132-138(in Chinese). doi: 10.3901/JME.2021.24.132
    [4] 王伟, 袁雷, 王晓巍. 飞机增材制造制件的宏观结构轻量化分析[J]. 飞机设计, 2015, 35(3): 24-28.

    WANG W, YUAN L, WANG X W. Macro-structural lightweight analysis for aircraft parts made by additive manufacturing technology[J]. Aircraft Design, 2015, 35(3): 24-28(in Chinese).
    [5] LIAN W L, NIU W J, LIN L J. A passive cooling design for an aircraft electromechanical actuator by using heat pipes[J]. Applied Thermal Engineering, 2021, 184: 116248. doi: 10.1016/j.applthermaleng.2020.116248
    [6] OENLER C D. Fluid flow and heat transfer simulation of an electro hydraulic actuator[D]. Delft: Delft University of Technology, 2016.
    [7] 白晓辉, 刘存良, 孟宪龙, 等. 八面体桁架结构在内冷通道中的流动传热特性研究[J]. 推进技术, 2022, 43(7): 286-295.

    BAI X H, LIU C L, MENG X L, et al. Flow and heat transfer characteristics of octet truss structure in internal cooling channel[J]. Journal of Propulsion Technology, 2022, 43(7): 286-295(in Chinese).
    [8] 邓昊宇, 王春洁. 三维点阵结构等效热分析与优化方法[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(6): 1122-1128.

    DENG H Y, WANG C J. Equivalent thermal analysis and optimization method for three-dimensional lattice structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1122-1128(in Chinese).
    [9] EKADE P, KRISHNAN S. Fluid flow and heat transfer characteristics of octet truss lattice geometry[J]. International Journal of Thermal Sciences, 2019, 137: 253-261. doi: 10.1016/j.ijthermalsci.2018.11.031
    [10] 易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述[J]. 功能材料, 2017, 48(10): 10055-10065.

    YI C Y, BAI L, CHEN X H, et al. Review on the metal three-dimensional lattice topology configurations research and application status[J]. Journal of Functional Materials, 2017, 48(10): 10055-10065(in Chinese).
    [11] KHADERI S N, DESHPANDE V S, FLECK N A. The stiffness and strength of the gyroid lattice[J]. International Journal of Solids and Structures, 2014, 51(23-24): 3866-3877. doi: 10.1016/j.ijsolstr.2014.06.024
    [12] SHEN B B, LI Y, YAN H B, et al. Heat transfer enhancement of wedge-shaped channels by replacing pin fins with Kagome lattice structures[J]. International Journal of Heat and Mass Transfer, 2019, 141: 88-101. doi: 10.1016/j.ijheatmasstransfer.2019.06.059
    [13] SON K N, WEIBEL J A, KUMARESAN V, et al. Design of multifunctional lattice-frame materials for compact heat exchangers[J]. International Journal of Heat and Mass Transfer, 2017, 115: 619-629. doi: 10.1016/j.ijheatmasstransfer.2017.07.073
    [14] LIANG D, CHEN W, JU Y C, et al. Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays[J]. Applied Thermal Engineering, 2021, 185: 116306. doi: 10.1016/j.applthermaleng.2020.116306
    [15] TAKEZAWA A, KOBASHI M, KOIZUMI Y, et al. Porous metal produced by selective laser melting with effective isotropic thermal conductivity close to the Hashin-Shtrikman bound[J]. International Journal of Heat and Mass Transfer, 2017, 105: 564-572. doi: 10.1016/j.ijheatmasstransfer.2016.10.006
    [16] VAISSIER B, PERNOT J P, CHOUGRANI L, et al. Parametric design of graded truss lattice structures for enhanced thermal dissipation[J]. Computer-Aided Design, 2019, 115: 1-12. doi: 10.1016/j.cad.2019.05.022
    [17] CHENG L, LIU J K, LIANG X, et al. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 408-439. doi: 10.1016/j.cma.2017.12.024
    [18] 张龙, 李昂, 赵云鹏, 等. 一种全封闭蒙皮点阵支撑结构的优化设计与试验验证[J]. 机械工程学报, 2021, 57(22): 35-42. doi: 10.3901/JME.2021.22.035

    ZHANG L, LI A, ZHAO Y P, et al. Optimal design and experimental verification of an enclosed skin lattice support structure[J]. Journal of Mechanical Engineering, 2021, 57(22): 35-42(in Chinese). doi: 10.3901/JME.2021.22.035
    [19] VALDEVIT L, HUTCHINSON J W, EVANS A G. Structurally optimized sandwich panels with prismatic cores[J]. International Journal of Solids and Structures, 2004, 41(18-19): 5105-5124. doi: 10.1016/j.ijsolstr.2004.04.027
    [20] MOON S K, TAN Y E, HWANG J, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(3): 223-228. doi: 10.1007/s40684-014-0028-x
    [21] XU X , JIANG Y, LEE H P. Engineering optimization multi-objective optimal design of sandwich panels using a genetic algorithm multi-objective optimal design of sandwich panels using a genetic algorithm[J]. Engineering Optimization, 2017, 49(10): 1665-1684.
    [22] 侯伟, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 67-77.

    HOU W, CHEN J, CHU S L, et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(7): 67-77(in Chinese).
    [23] 姚再起, 马芳武, 刘强, 等. 汽车轻量化评价方法研究[J]. 中国工程科学, 2014, 16(1): 36-39. doi: 10.3969/j.issn.1009-1742.2014.01.004

    YAO Z Q, MA F W, LIU Q, et al. Evaluation methods of vehicle lightweight[J]. Engineering Sciences, 2014, 16(1): 36-39(in Chinese). doi: 10.3969/j.issn.1009-1742.2014.01.004
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  44
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-04-04
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答