留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CAD/CAM模型驱动的型腔特征自适应数控工艺设计方法

徐昌鸿 黄瑞 张树生 梁嘉宸 卞荣

徐昌鸿,黄瑞,张树生,等. CAD/CAM模型驱动的型腔特征自适应数控工艺设计方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3374-3384 doi: 10.13700/j.bh.1001-5965.2023.0564
引用本文: 徐昌鸿,黄瑞,张树生,等. CAD/CAM模型驱动的型腔特征自适应数控工艺设计方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3374-3384 doi: 10.13700/j.bh.1001-5965.2023.0564
XU C H,HUANG R,ZHANG S S,et al. Adaptive NC process planning approach for pocket features driven by CAD/CAM models[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3374-3384 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0564
Citation: XU C H,HUANG R,ZHANG S S,et al. Adaptive NC process planning approach for pocket features driven by CAD/CAM models[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3374-3384 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0564

CAD/CAM模型驱动的型腔特征自适应数控工艺设计方法

doi: 10.13700/j.bh.1001-5965.2023.0564
基金项目: 

国家自然科学基金(52075148);江苏省高等学校基础科学(自然科学)研究项目(23KJB460017);南京工程学院高层次引进人才科研启动基金资助项目(YKJ202128)

详细信息
    通讯作者:

    E-mail: xuchanghonglz@163.com

  • 中图分类号: TP391

Adaptive NC process planning approach for pocket features driven by CAD/CAM models

Funds: 

National Natural Science Foundation of China (52075148); Jiangsu Provincial Natural Science Foundation of Higher Education, China (23KJB460017); The Scientific Research Foundation for the High-level Personnel of Nanjing Institute of Technology (YKJ202128)

More Information
  • 摘要:

    为实现对已有数控(NC)工艺设计成果的有效重用,提出一种计算机辅助设计/计算机辅助制造(CAD/CAM)模型驱动的型腔特征自适应数控工艺设计方法。基于中轴变换(MAT)提取型腔特征三维CAD模型中隐藏的高层次数控工艺信息,有效表征刀具切削过程;针对已有特征实例进行可重用性分析,构建一个融合多属性数控工艺要素的特征相似性评价模型;基于检索返回的相似特征实例,自适应重用其关联的CAM模型工艺参数生成新特征的数控工艺。实验结果表明:所提方法能够自动、高效地获得特征数控工艺,提升工艺设计效率85%以上,满足企业工艺设计智能化的工程需求。

     

  • 图 1  CATIA软件中的CAM模型

    Figure 1.  CAM model in CATIA software

    图 2  型腔特征的轮廓曲线

    Figure 2.  Boundary curves of pocket feature

    图 3  本文方法总体流程

    Figure 3.  Overview of the proposed method

    图 4  切削面积计算示意图

    Figure 4.  Schematic diagram of computing cutting area calculation

    图 5  数控工艺自适应重用机制

    Figure 5.  Adaptive reuse mechanism of numerical control process

    图 6  三维CAD模型数控工艺信息提取实例

    Figure 6.  Example of NC process extraction case for 3D CAD model

    图 7  可重用性分析计算

    Figure 7.  Reusability analysis calculations

    图 8  FAFB刀具轨迹

    Figure 8.  Tool paths of FA and FB

    图 9  特征检索实例

    Figure 9.  Retrieval case for features

    图 10  相似特征数控工艺自适应重用

    Figure 10.  Adaptive reuse of NC process of similar feature

    表  1  可重用性分析因素

    Table  1.   Elements of reusability analysis

    因素 内容 可重用要求
    材料Material GGr15、45钢··· Material (FA) =Material (FB)
    特征类型Feature 型腔、孔、凸台··· Feature (FA)= Feature (FB)
    毛坯类型Blank 铸件、锻件、机加件··· Blank (FA)= Blank (FB)
    精度要求 尺寸公差等级IT
    表面粗糙度Ra
    IT(FB)≤IT(FA)∧
    Ra(FB)≤Ra(FA)
    刀具要求 粗加工刀具序列、
    候选刀具集
    TR(FB)$ \subseteq $FACTS
    下载: 导出CSV

    表  2  多属性数控工艺要素及其内涵

    Table  2.   Multi-attribute factors of NC process

    信息层次工艺要素工艺相似性内涵
    高层次刀具轨迹刀具切削运动
    退刀次数加工连续性
    切削面积材料去除量
    低层次精度要求加工质量
    下载: 导出CSV

    表  3  相似度计算结果

    Table  3.   Result of similarity calculation

    特征 L(D36)/mm L(D16)/mm R(D36) R(D16) S(D36)/mm2 S(D16)/mm2 IT Ra ψ
    FA 73.45 221.98 2 7 3 938.52 2 742.31 (12,11) 6.3 0.86
    (12,11)
    FB 136.51 323.05 2 8 5 436.13 4 128.95 (13,12) 6.3
    (14,12)
     注:L(D36),L(D16)为θL=0.76, ωL=0.3时数值;R(D36),R(D16)为θR=0.97, ωR=0.3时数值;S(D36),S(D16)为θA=0.82, ωA=0.3时数值;ITRaθP=0.98, ωP=0.1时数值。
    下载: 导出CSV

    表  4  数控工艺设计效率分析

    Table  4.   Efficiency analysis of NC process planning

    方法 加工操作数量 人工交互次数 编程时间/min
    交互式方法 5 ≥120 ≥20
    本文方法 0 ≤15 ≤3
    下载: 导出CSV

    表  5  本文方法与已有方法的比较

    Table  5.   Comparison of the proposed method and existing approaches

    方法 检索粒度 隐式信
    息挖掘
    自动化
    程度
    检索
    效率
    重用领域
    本文方法 制造特征 充分 良好 数控工艺设计
    文献[21] 制造特征 不充分 一般 产品设计
    文献[22-23] 零件整体 一般
    文献[1] 制造特征 不充分 一般 装配工艺设计
    下载: 导出CSV
  • [1] 邓乐武, 黄玉璐, 王浩然, 等. 基于MBD的飞机测试工艺数字化定义方法[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(11): 2181-2188.

    DENG L W, HUANG Y L, WANG H R, et al. Digital definition method of aircraft test process based on MBD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2181-2188(in Chinese).
    [2] SONG I, HAN S. Implementation of the direct integration from CAM to CAE for the PCB simulation[J]. Computers in Industry, 2013, 64(8): 1014-1021. doi: 10.1016/j.compind.2013.06.014
    [3] 黄波, 张树生, 黄瑞, 等. 面向宏观工艺重用的三维CAD模型检索方法[J]. 计算机集成制造系统, 2020, 26(12): 3386-3398.

    HUANG B, ZHANG S S, HUANG R, et al. Macro process reuse oriented 3D CAD model retrieval method[J]. Computer Integrated Manufacturing Systems, 2020, 26(12): 3386-3398(in Chinese).
    [4] ZHANG C, ZHOU G H, LU Q, et al. Graph-based knowledge reuse for supporting knowledge-driven decision-making in new product development[J]. International Journal of Production Research, 2017, 55(23): 7187-7203. doi: 10.1080/00207543.2017.1351643
    [5] GAO Y, TANG J H, LI H J, et al. View-based 3D model retrieval with probabilistic graph model[J]. Neurocomputing, 2010, 73(10-12): 1900-1905. doi: 10.1016/j.neucom.2009.11.050
    [6] HERZOG V, SUWELACK S. Bridging the gap between geometry and user intent: retrieval of CAD models via regions of interest[J]. Computer-Aided Design, 2023, 163: 103573. doi: 10.1016/j.cad.2023.103573
    [7] 杜雨佳, 李海生, 姚春莲, 等. 基于三元组网络的单图三维模型检索[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(9): 1691-1700.

    DU Y J, LI H S, YAO C L, et al. Monocular image based 3D model retrieval using triplet network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1691-1700(in Chinese).
    [8] 于勇, 顾黎, 印璞, 等. MBD模型本体建模及检索技术研究与应用[J]. 北京麻豆精品秘 国产传媒学报, 2017, 43(2): 260-269.

    YU Y, GU L, YIN P, et al. Research and implementation of ontology modeling and retrieval technology of MBD model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 260-269(in Chinese).
    [9] ZHANG R Z, ZHOU X H. Similarity assessment of mechanical parts based on integrated product information model[J]. Journal of Computing and Information Science in Engineering, 2011, 11(1): 1.
    [10] LI Z, ZHOU X H, LIU W, et al. A similarity-based reuse system for injection mold design in automotive interior industry[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(5): 1783-1795.
    [11] LI Z, ZHOU X H, LIU W. A geometric reasoning approach to hierarchical representation for B-rep model retrieval[J]. Computer-Aided Design, 2015, 62: 190-202. doi: 10.1016/j.cad.2014.05.008
    [12] HONG T, LEE K, KIM S. Similarity comparison of mechanical parts to reuse existing designs[J]. Computer-Aided Design, 2006, 38(9): 973-984. doi: 10.1016/j.cad.2006.05.004
    [13] HOU B K, PENG J H, HE S, et al. A similarity-based approach for the variant design of core-pulling mechanism in injection mold design[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(1): 329-344.
    [14] 花豹, 周彬, 顾星海, 等. 基于图神经网络的工艺表格语义相似性度量[J]. 计算机集成制造系统, 2022, 28(12): 3805-3821.

    HUA B, ZHOU B, GU X H, et al. Semantic similarity measurement of process table based on graph neural network[J]. Computer Integrated Manufacturing Systems, 2022, 28(12): 3805-3821(in Chinese).
    [15] 杨梦媛, 李迎光, 许可. 基于中轴变换的型腔高速铣削刀具轨迹生成方法[J]. 航空学报, 2021, 42(10): 524979.

    YANG M Y, LI Y G, XU K. An approach of tool path generation based on medial transformation for high-speed pocketing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524979(in Chinese).
    [16] HUANG R, JIANG J F, HUANG B, et al. Multilevel structured NC machining process model based on dynamic machining feature for process reuse[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2045-2060.
    [17] ERBER M, ROSNITSCHEK T, HARTMANN C, et al. Geometry-based assurance of directional solidification for complex topology-optimized castings using the medial axis transform[J]. Computer-Aided Design, 2022, 152: 103394. doi: 10.1016/j.cad.2022.103394
    [18] CHEN Z C, FU Q. An optimal approach to multiple tool selection and their numerical control path generation for aggressive rough machining of pockets with free-form boundaries[J]. Computer-Aided Design, 2011, 43(6): 651-663. doi: 10.1016/j.cad.2011.01.020
    [19] QIAN B, FAN H R, ZHANG J R. Fast calculation algorithm for region recognition and model interference ratio in the STL model based on voxel mapping decoupling[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3): 1553-1578.
    [20] RASOULZADEH S, SENK V, KÖNIGSBERGER M, et al. A novel integrative design framework combining 4D sketching, geometry reconstruction, micromechanics material modelling, and structural analysis[J]. Advanced Engineering Informatics, 2023, 57: 102074. doi: 10.1016/j.aei.2023.102074
    [21] BAI J, GAO S M, TANG W H, et al. Design reuse oriented partial retrieval of CAD models[J]. Computer-Aided Design, 2010, 42(12): 1069-1084. doi: 10.1016/j.cad.2010.07.002
    [22] BICKEL S, SCHLEICH B, WARTZACK S. A novel shape retrieval method for 3D mechanical components based on object projection, pre-trained deep learning models and autoencoder[J]. Computer-Aided Design, 2023, 154: 103417. doi: 10.1016/j.cad.2022.103417
    [23] LUPINETTI K, GIANNINI F, MONTI M, et al. Content-based multi-criteria similarity assessment of CAD assembly models[J]. Computers in Industry, 2019, 112: 103111. doi: 10.1016/j.compind.2019.07.001
    [24] LEE H, RYU K. Product and design feature-based similar process retrieval and modeling for mold manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(3): 703-714. doi: 10.1007/s00170-020-06161-5
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 录用日期:  2024-01-10
  • 网络出版日期:  2024-01-15
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答