留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗氧型催化惰化系统整体式反应器性能研究

郭晨阳 刘祎 刘豪正 王俊杰 高经诚 冯诗愚

郭晨阳,刘祎,刘豪正,等. 耗氧型催化惰化系统整体式反应器性能研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3547-3554 doi: 10.13700/j.bh.1001-5965.2023.0562
引用本文: 郭晨阳,刘祎,刘豪正,等. 耗氧型催化惰化系统整体式反应器性能研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3547-3554 doi: 10.13700/j.bh.1001-5965.2023.0562
GUO C Y,LIU Y,LIU H Z,et al. Research on oxygen consumption based inerting monolithic catalyst reactor performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3547-3554 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0562
Citation: GUO C Y,LIU Y,LIU H Z,et al. Research on oxygen consumption based inerting monolithic catalyst reactor performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3547-3554 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0562

耗氧型催化惰化系统整体式反应器性能研究

doi: 10.13700/j.bh.1001-5965.2023.0562
基金项目: 

国家自然科学基金中国民用航空民航联合研究基金(U1933121);国家自然科学基金(52372331);中央高校基本科研业务费专项基金;江苏省高校优势学科建设工程;南京麻豆精品秘 国产传媒研究生科研与实践创新计划项目(xcxjh20220102)

详细信息
    通讯作者:

    E-mail:shiyuf@nuaa.edu.cn

  • 中图分类号: V228

Research on oxygen consumption based inerting monolithic catalyst reactor performance

Funds: 

National Natural Science Foundation of China - China Civil Aviation Joint Research Foundation (U1933121); National Natural Science Foundation of China (52372331); Special Fund for basic scientific research funds of central universities; Jiangsu Province superior discipline construction project; Graduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics (xcxjh20220102)

More Information
  • 摘要:

    对Pd/γ-Al2O3催化剂进行了实验测量,拟合得到了其反应动力学方程,建立了整体式反应器二维瞬态模型,并采用Modelica语言编程求解,开展动态性能仿真,分析了耗氧型惰化系统中飞温和催化剂高温失活现象对整体式反应器性能的影响,研究了飞行过程中氧气体积分数变化对反应器的影响。研究结果表明:壁面冷却可有效降低飞温现象,但同时会降低反应器催化效率。飞温现象导致的催化剂涂层不可逆失活发生在反应最剧烈的反应器出口侧壁面上,小面积的失活会导致催化效率降低80%。飞机爬升阶段油箱内的氧浓度增加可有效提升反应器内的燃油蒸汽转化率,但也需要避免高氧浓度对反应器涂层加速失活的影响。

     

  • 图 1  反应动力学实验台示意

    Figure 1.  Reaction dynamics experiment diagram

    图 2  反应温度与反应速率关系

    Figure 2.  Curves of reaction rate and reaction temperature under different tank temperature

    图 3  高温条件下反应温度与转化率关系

    Figure 3.  Curves of reaction temperature and convention rate under high temperature

    图 4  反应速率随氧气体积分数变化

    Figure 4.  Curve of reaction rate and oxygen volume fraction

    图 5  拟合反应速率与实验反应速率对比

    Figure 5.  Comparison between fitting reaction rate and experiment reaction rate

    图 6  反应器物理模型

    Figure 6.  Reactor physics model

    图 7  氧气浓度变化曲线

    Figure 7.  Oxygen concentration change curve

    图 8  网格无关性验证

    Figure 8.  Grid independence verification

    图 9  模拟数据与实验数据对比

    Figure 9.  Comparison between simulation data and experimental data

    图 10  反应器温度分布

    Figure 10.  Reactor temperature distribution

    图 11  绝热边界条件下反应器径向气体温度分布

    Figure 11.  Reactor temperature normal distribution in different section under adiabatic boundary condition

    图 12  管道内气体温度随时间变化

    Figure 12.  Gas temperature in pipeline change over time

    图 13  对流边界条件下反应器径向气体温度分布

    Figure 13.  Reactor temperature normal distribution in the radial direction of the reactor under convection boundary condition

    图 14  永久活区域长度随时间增大

    Figure 14.  The length of the Catalyst deactivation area increase over time

    图 15  燃油蒸汽转化率和失活面积关系

    Figure 15.  Curves of fuel steam conversion rate and catalyst deactivation area relationship

    图 16  不同状态进口氧气体积分数对碳氢物转化率的影响

    Figure 16.  Influence of hydrocarbon conversion efficiency rate under different inlet oxygen volume fraction

    图 17  不同状态进口氧气体积分数对壁面完全失活时间的影响

    Figure 17.  Influence of completely deactivation time under different inlet oxygen volume fraction

    表  1  实验台使用的设备型号及性能参数

    Table  1.   Equipment model and performance parameters in the experiment used in the laboratory bench

    设备 型号 工作范围 精度范围
    浮子流量计 6~60 mL/min ±4%
    注射泵 SP-1000 0.1~999.9 mL ±3%
    马弗炉 SK2-2-13单管 功率2 kW
    气相色谱仪 GC9790 总烃 ±0.1%
    反应器 非标定制
    温控表 HKDN 0~5 V ±0.5%F.S.
    数据采集仪 LR-8400-21 DC±100 V 500 mV
    下载: 导出CSV

    表  2  参数拟合结果

    Table  2.   Parameter fitting result

    氧气体积分数 指前因子k0/
    (m3(mol·s)−1)
    活化能E/
    (J·mol)−1
    m n
    <0.1(低) 13 370.72 23 422.56 0.319 0.659
    ≥0.1(高) 25 027.53 28 285.78 0.798 0
    下载: 导出CSV

    表  3  反应器物理参数

    Table  3.   Reactor physics parameter

    物理参数 数值
    管壁密度/(kg·m−3) 2100
    管壁比热容/(J·kg−1·K−1) 520
    管壁导热系数/(W·m−1·K−1) 17.6
    下载: 导出CSV
  • [1] 王明波, 邵垒, 潘俊, 等. 耗氧型燃油箱惰化技术历史和现状[J]. 航空科学技术, 2016, 27(7): 1-7.

    WANG M B, SHAO L, PAN J, et al. History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science & Technology, 2016, 27(7): 1-7 (in Chinese).
    [2] 刘卫华, 冯诗愚. 飞机燃油箱惰化技术[M]. 北京: 科学出版社, 2018: 2-3.

    LIU W H, FENG S Y. Aircraft fuel tank inerting technology[M]. Beijing: Science Press, 2018: 2-3. (in Chinese).
    [3] 王衡, 王昌红. 近几年整体式催化剂的开发与应用[J]. 工业催化, 2019, 27(10): 15-21. doi: 10.3969/j.issn.1008-1143.2019.10.003

    WANG H, WANG C H. Development and application of monolithic catalyst in recent years[J]. Industrial Catalysis, 2019, 27(10): 15-21. doi: 10.3969/j.issn.1008-1143.2019.10.003
    [4] JOHNSON R W, ZAKI R, YATES S F. Advanced carbon dioxide fuel tank inerting system: US7905259 [P]. 2011-03-15.
    [5] 冯诗愚, 刘冠男, 江荣杰, 等. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报, 2021, 36(3): 616-625.

    FENG S Y, LIU G N, JIANG R J, et al. Research status and development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power, 2021, 36(3): 616-625 (in Chinese).
    [6] 彭孝天, 冯诗愚, 周利彪, 等. 温度对耗氧型惰化系统产水性能影响[J]. 航空动力学报, 2020, 35(8): 1622-1627.

    PENG X T, FENG S Y, ZHOU L B, et al. Effect of temperature on water production performance of oxygen-consuming inerting system[J]. Journal of Aerospace Power, 2020, 35(8): 1622-1627 (in Chinese).
    [7] 李乃珍. 焦炉煤气加氢脱硫FeMo/Al2O3催化剂积碳失活与性能优化研究[D]. 太原: 太原理工大学, 2022.

    LI N Z. Study on carbon deposit deactivation and performance optimization of FeMo/Al2O3 hydrodesulfurization catalyst in coke oven gas[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese).
    [8] WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGS) for fuel tank inerting[C]//Proceedings of the American Helicopter Society 69th Annual Forum. Fairfax: American Helicopter Society, 2013, 69(1): 550-559.
    [9] 孙浩程, 赵朝成, 陈亚男, 等. 催化燃烧法处理挥发性有机物的研究进展[J]. 现代化工, 2015, 35(6): 57-61.

    SUN H C, ZHAO C C, CHEN Y N, et al. Research progress in catalytic combustion of volatile organic compounds[J]. Modern Chemical Industry, 2015, 35(6): 57-61.
    [10] 卢泽湘, 范立委. 金属基整体式催化剂的研究进展[J]. 广州化工, 2010, 38(6): 9-12.

    LU Z X, FAN L W. Research progress of metallic monolithic catalysts[J]. Guangzhou Chemical Industry, 2010, 38(6): 9-12 (in Chinese).
    [11] WANKER R, BERG M, RAUPENSTRAUCH H, et al. Numerical simulation of monolithic catalysts with a heterogeneous model and comparison with experimental results from a wood-fired domestic boiler[J]. Chemical Engineering & Technology, 2000, 23(6): 535-542.
    [12] DEPCIK C, SRINIVASAN A. One + one-dimensional modeling of monolithic catalytic converters[J]. Chemical Engineering & Technology, 2011, 34(12): 1949-1965.
    [13] GUO W Y, WU W Z, LUO M, et al. Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process[J]. Fuel Processing Technology, 2013, 108: 133-138. doi: 10.1016/j.fuproc.2012.06.005
    [14] PENG X T, WANG H M, HUANG L, et al. Performance of an oxygen-consuming inerting system for an aircraft fuel tank with RP-3 aviation fuel in flight[J]. Areospace Science and Technology, 2022, 123: 107446.
    [15] Peng X , Feng S , Chaoyue L I , et al. Effect of fuel type on the performance of an aircraft fuel tank oxygen-consuming inerting system[J]. Chinese Journal of Aeronautics, 2021, 34(3): 82-93.
    [16] 郑婷婷, 何俊俊, 吴乐刚, 等. 汽车尾气三效催化剂的失活 [C]//第八届全国工业催化技术及应用年会论文集. 西安: 工业催化, 2011: 11-14.

    ZHENG T T. HE J J. WU L G, et al. Deactivation of automobile exhaust three-way catalyst[C]// Proceedings of the 8th National Annual Conference on Industrial Catalysis Technology and Application. Xi’an: Industrial Catalysis, 2011: 11-14 (in Chinese).
    [17] 闫红敏. 军用飞机燃油箱的氮气惰化特性研究[D]. 沈阳: 沈阳航空工业学院, 2006.

    YAN H M. Study on nitrogen inerting characteristic of military aircraft fuel tank[D]. Shenyang: Shenyang Institute of Aeronautics Engineering, 2006 (in Chinese).
    [18] 黄敬敬, 贾志刚, 刘翻艳. Ce改性Pd基整体式催化剂的结构特征及其甲烷催化燃烧性能[J]. 工业催化, 2013, 21(5): 23-29. doi: 10.3969/j.issn.1008-1143.2013.05.005

    HUANG J J, JIA Z G, LIU F Y. Catalytic combustion of lean methane over Pd/γ-Al2O3/Cord monolith catalysts modified by Ce[J]. Industrial Catalysis, 2013, 21(5): 23-29 (in Chinese). doi: 10.3969/j.issn.1008-1143.2013.05.005
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  39
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-01
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-08-15
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答