留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于肢体动作预测的动态可变人机协作装配

吴海彬 宋晨阳 周世璇

吴海彬,宋晨阳,周世璇. 基于肢体动作预测的动态可变人机协作装配[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3243-3252 doi: 10.13700/j.bh.1001-5965.2023.0543
引用本文: 吴海彬,宋晨阳,周世璇. 基于肢体动作预测的动态可变人机协作装配[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3243-3252 doi: 10.13700/j.bh.1001-5965.2023.0543
WU H B,SONG C Y,ZHOU S X. Dynamically changeable human-robot collaborative assembly based on limb motion prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3243-3252 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0543
Citation: WU H B,SONG C Y,ZHOU S X. Dynamically changeable human-robot collaborative assembly based on limb motion prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3243-3252 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0543

基于肢体动作预测的动态可变人机协作装配

doi: 10.13700/j.bh.1001-5965.2023.0543
基金项目: 

国家重点研发计划(2018YFB1308603);福建省科技重大专项专题项目(2024HZ026020)

详细信息
    通讯作者:

    E-mail:wuhb@fzu.edu.cn

  • 中图分类号: TB181

Dynamically changeable human-robot collaborative assembly based on limb motion prediction

Funds: 

National Key Research and Development Program of China (2018YFB1308603); Fujian Provincial Science and Technology Major Project of China (2024HZ026020)

More Information
  • 摘要:

    在复杂的装配领域中,单纯依靠机器人很难完成,进行人机协作装配才能确保装配过程顺利进行,但人机协作过程中,机器人缺乏根据人的不同操作作出响应的能力。针对产品组装过程中存在多种不同的组装方案和顺序的情况,提出一种通过识别和预测操作者肢体动作,使机器人根据操作者不同的选择做出对应配合的装配动作,实现动态可变的人机协作装配方案。利用惯性测量单元(IMU)采集操作者的肢体动作信息,提取惯性测量单元信号特征,为提高识别准确率,提出一种同时利用时域和时频域特征的粒子群优化(PSO)支持向量机(SVM)算法,用于肢体动作识别;同时,提出一种参数可变的隐马尔可夫模型(HMM)实时预测肢体动作序列,在监督训练和零训练状态下,推断出操作者的未来意图,实现装配序列的动态可变性。实验结果表明:在减速器人机协作装配实验中,所提方案肢体动作平均识别率达到96.7%,并且能够有效预测操作者肢体动作,实现装配顺序可变的动态人机协作装配,显著提升了装配系统的适应性,降低了人机协作装配的复杂度。

     

  • 图 1  人机协作装配系统总体方案

    Figure 1.  Overall scheme of human-robot collaborative assembly system

    图 2  某减速器的部分装配序列

    Figure 2.  Partial assembly sequence of a reducer

    图 3  PSO优化SVM参数的算法流程

    Figure 3.  Algorithm flow of SVM parameters optimized by PSO

    图 4  改进的HMM算法流程

    Figure 4.  Flow of improved HMM algorithm

    图 5  肢体动作序列预测HMM结构

    Figure 5.  HMM structure prediction based on a limb movement sequence

    图 6  肢体动作

    Figure 6.  Limb movement

    图 7  数据预处理

    Figure 7.  Data preprocessing

    图 8  PSO寻找最佳参数的识别率曲线

    Figure 8.  Recognition rate curves of PSO to find the best parameters

    图 9  PSO-SVM肢体动作分类混淆矩阵

    Figure 9.  PSO-SVM limb action classification confusion matrix

    图 10  减速器装配实验场景

    Figure 10.  Scene diagram of reducer assembly experiment

    图 11  肢体动作序列未增量训练预测

    Figure 11.  Prediction of limb action sequence without incremental training

    图 12  肢体动作序列增量训练预测

    Figure 12.  Incremental training prediction of limb action sequence

    图 13  监督训练肢体动作序列增量训练部分状态转移概率

    Figure 13.  State transition probability of incremental training part of supervised training limb action sequence

    图 14  零训练肢体动作序列未增量训练预测

    Figure 14.  Prediction of zero-training limb action sequence without incremental training

    图 15  零训练肢体动作序列增量训练预测

    Figure 15.  Incremental training prediction of zero training limb action sequence

    图 16  零训练肢体动作序列增量训练部分状态转移概率

    Figure 16.  State transition probability of incremental training part of zero training limb action sequence

    表  1  特征提取

    Table  1.   Feature extraction

    特征 公式
    均值 $ \overline x = \dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{x_i}} $
    峰值 $ {x_{\mathrm{p}}} = \max \left\{ {\left| {{x_1}} \right|,\left| {{x_2}} \right|, \cdots ,\left| {{x_N}} \right|} \right\} $
    标准差 $ {\sigma _x} = \sqrt {\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {{{\left( {{x_i} - \overline x } \right)}^2}} } $
    均方根 $ {x_{{\mathrm{rms}}}} = \sqrt {\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {x_i^2} } $
    峰值因子 $ C = \dfrac{{{x_{\mathrm{p}}}}}{{{x_{{\mathrm{rms}}}}}} $
    波形因子 $ W = \dfrac{{{x_{{\mathrm{rms}}}}}}{{\dfrac{1}{N}\displaystyle\sum\limits_{i = 1}^N {\left| {{x_i}} \right|} }} $
    小波包能量 $ {E_{j,k}} = {\displaystyle\sum\limits_{l = 1}^m {\left| {d_l^{j,k}} \right|} ^2} $
    下载: 导出CSV

    表  2  初始状态矩阵参数

    Table  2.   Initial state matrix parameter

    状态 数值
    LTB 1
    RTW 0
    LBS 0
    LMS 0
    LSS 0
    RBT 0
    RMT 0
    RST 0
    下载: 导出CSV

    表  3  状态转移矩阵参数

    Table  3.   State transition matrix parameter

    状态 数值
    AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8
    AS1 0 $ \dfrac{31}{40} $ 0 0 $ \dfrac{9}{40} $ 0 0 0
    AS2 0 0 $ \dfrac{21}{80} $ $ \dfrac{41}{80} $ $ \dfrac{9}{40} $ 0 0 0
    AS3 0 0 0 $ \dfrac{11}{40} $ $ \dfrac{7}{20} $ $ \dfrac{3}{16} $ $ \dfrac{1}{10} $ $ \dfrac{7}{80} $
    AS4 0 0 $ \dfrac{9}{20} $ 0 $ \dfrac{3}{20} $ $ \dfrac{1}{10} $ $ \dfrac{9}{40} $ $ \dfrac{9}{40} $
    AS5 0 $ \dfrac{3}{20} $ $ \dfrac{7}{40} $ $ \dfrac{3}{20} $ 0 $ \dfrac{19}{80} $ $ \dfrac{1}{20} $ $ \dfrac{19}{80} $
    AS6 0 0 0 $ \dfrac{2}{55} $ $ \dfrac{1}{55} $ 0 $ \dfrac{34}{55} $ $ \dfrac{18}{55} $
    AS7 0 0 $ \dfrac{5}{58} $ 0 $ \dfrac{3}{58} $ $ \dfrac{10}{29} $ 0 $ \dfrac{15}{29} $
    AS8 0 $ \dfrac{6}{47} $ $ \dfrac{4}{47} $ $ \dfrac{3}{47} $ 0 $ \dfrac{18}{47} $ $ \dfrac{16}{47} $ 0
    下载: 导出CSV

    表  4  发射矩阵参数

    Table  4.   Transmit matrix parameter

    状态 数值
    LTB RTW LBS LMS LSS RBT RMT RST
    AS1 1 0 0 0 0 0 0 0
    AS2 0 1 0 0 0 0 0 0
    AS3 0 0 1 0 0 0 0 0
    AS4 0 0 0 1 0 0 0 0
    AS5 0 0 0 0 1 0 0 0
    AS6 0 0 0 0 0 1 0 0
    AS7 0 0 0 0 0 0 1 0
    AS8 0 0 0 0 0 0 0 1
    下载: 导出CSV
  • [1] ZHOU J, LI P G, ZHOU Y H, et al. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4(1): 11-20. doi: 10.1016/j.eng.2018.01.002
    [2] 黄海丰, 刘培森, 李擎, 等. 协作机器人智能控制与人机交互研究综述[J]. 工程科学学报, 2022, 44(4): 780-791. doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204028

    HUANG H F, LIU P S, LI Q, et al. Review: intelligent control and human-robot interaction for collaborative robots[J]. Chinese Journal of Engineering, 2022, 44(4): 780-791(in Chinese). doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204028
    [3] WANG P, LIU H Y, WANG L H, et al. Deep learning-based human motion recognition for predictive context-aware human-robot collaboration[J]. CIRP Annals, 2018, 67(1): 17-20. doi: 10.1016/j.cirp.2018.04.066
    [4] 常玉青. 人机协作中基于多Kinect的人体行为识别研究[D]. 长春: 吉林大学, 2018: 5-7.

    CHANG Y Q. Research on human behavior recognition based on multi-Kinect in human-computer cooperation[D]. Changchun: Jilin University, 2018: 5-7(in Chinese).
    [5] LU G L, ZHOU Y Q, LI X Y, et al. Efficient action recognition via local position offset of 3D skeletal body joints[J]. Multimedia Tools and Applications, 2016, 75(6): 3479-3494. doi: 10.1007/s11042-015-2448-1
    [6] SHI M, YANG C Y, ZHANG D L. A novel human-machine collaboration model of an ankle joint rehabilitation robot driven by EEG signals[J]. Mathematical Problems in Engineering, 2021, 2021(1): 5564235.
    [7] ÇOBAN M, GELEN G. Realization of human-robot collaboration in hybrid assembly systems by using wearable technology[C]//Proceedings of the 6th International Conference on Control Engineering & Information Technology. Piscataway: IEEE Press, 2018: 1-6.
    [8] SYED A S, SHERHAN Z, SHEHRAM M, et al. Using wearable sensors for human activity recognition in logistics: a comparison of different feature sets and machine learning algorithms[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(9): 644-649.
    [9] WANG W T, LI R, DIEKEL Z M, et al. Controlling object hand-over in human-robot collaboration via natural wearable sensing[J]. IEEE Transactions on Human Machine Systems, 2019, 49(1): 59-71. doi: 10.1109/THMS.2018.2883176
    [10] 陈友东, 刘嘉蕾, 胡澜晓. 人机协作中人的动作终点预测[J]. 北京麻豆精品秘 国产传媒学报, 2019, 45(1): 35-43.

    CHEN Y D, LIU J L, HU L X. Human motion end point prediction in human-robot collaboration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 35-43(in Chinese).
    [11] LIU Z T, LIU Q, XU W J, et al. Deep learning-based human motion prediction considering context awareness for human-robot collaboration in manufacturing[J]. Procedia CIRP, 2019, 83: 272-278. doi: 10.1016/j.procir.2019.04.080
    [12] KWON W Y, SUH I H. Planning of proactive behaviors for human-robot cooperative tasks under uncertainty[J]. Knowledge-Based Systems, 2014, 72: 81-95. doi: 10.1016/j.knosys.2014.08.021
    [13] HAWKINS K P, VO N, BANSAL S, et al. Probabilistic human action prediction and wait-sensitive planning for responsive human-robot collaboration[C]//Proceedings of the 13th IEEE-RAS International Conference on Humanoid Robots. Piscataway: IEEE Press, 2013: 499-506.
    [14] LIU H Y, WANG L H. Human motion prediction for human-robot collaboration[J]. Journal of Manufacturing Systems, 2017, 44: 287-294. doi: 10.1016/j.jmsy.2017.04.009
    [15] CRAMER M, CRAMER J, KELLENS K, et al. Towards robust intention estimation based on object affordance enabling natural human-robot collaboration in assembly tasks[J]. Procedia CIRP, 2018, 78: 255-260. doi: 10.1016/j.procir.2018.09.069
    [16] ZANCHETTIN A M, CASALINO A, PIRODDI L, et al. Prediction of human activity patterns for human-robot collaborative assembly tasks[J]. IEEE Transactions on Industrial Informatics, 2018, 15(7): 3934-3942.
    [17] 祁亨年. 支持向量机及其应用研究综述[J]. 计算机工程, 2004, 30(10): 6-9.

    QI H N. Support vector machines and application research overview[J]. Computer Engineering, 2004, 30(10): 6-9(in Chinese).
    [18] CHANG C C, LIN C J. LIBSVM[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
    [19] YE M Y, YAN X A, JIA M P. Rolling bearing fault diagnosis based on VMD-MPE and PSO-SVM[J]. Entropy, 2021, 23(6): 762. doi: 10.3390/e23060762
    [20] TONG L N, SONG Q J, GE Y J, et al. HMM-based human fall detection and prediction method using tri-axial accelerometer[J]. IEEE Sensors Journal, 2013, 13(5): 1849-1856. doi: 10.1109/JSEN.2013.2245231
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  94
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-01-31
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答