留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FY-3E的星载GNSS-R海面高度反演模型

张云 鹿麒 张月维 秦甘尧 胡秀清 杨光林

张云,鹿麒,张月维,等. 基于FY-3E的星载GNSS-R海面高度反演模型[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3262-3272 doi: 10.13700/j.bh.1001-5965.2023.0540
引用本文: 张云,鹿麒,张月维,等. 基于FY-3E的星载GNSS-R海面高度反演模型[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3262-3272 doi: 10.13700/j.bh.1001-5965.2023.0540
ZHANG Y,LU Q,ZHANG Y W,et al. Spaceborne GNSS-R sea surface height inversion model using FY-3E[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3262-3272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0540
Citation: ZHANG Y,LU Q,ZHANG Y W,et al. Spaceborne GNSS-R sea surface height inversion model using FY-3E[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3262-3272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0540

基于FY-3E的星载GNSS-R海面高度反演模型

doi: 10.13700/j.bh.1001-5965.2023.0540
基金项目: 

国家自然科学基金(42176175,42271335);国家重点研发计划(2019YFD0900805)

详细信息
    通讯作者:

    E-mail:weixing1132@126.com

  • 中图分类号: P715.6

Spaceborne GNSS-R sea surface height inversion model using FY-3E

Funds: 

National Natural Science Foundation of China (42176175,42271335); National Key Research and Development Program of China (2019YFD0900805)

More Information
  • 摘要:

    海面高度(SSH)在海洋学和气象学等领域中具有重要意义。针对目前缺乏利用中国自主研发风云三号E星(FY-3E)的全球导航卫星掩星探测仪-Ⅱ型(GNOS-Ⅱ)特有的不均匀分布时延-多普勒(DDM)数据实现海面测高研究的问题,采用DDM海面高度反演技术,使用丹麦DTU18模型和海潮模型验证反演精度,综合传统物理模型和机器学习模型,分别对星载北斗导航卫星系统(BDS)和全球定位系统(GPS)反射信号的海面高度反演性能进行评估。结果显示,由于BDS B1Ⅰ信号的码片分辨率高于GPS,使用BDS的物理模型进行全球海面高度反演的最大平均绝对误差(MAE)约为3.0 m,明显优于GPS反演结果(最大MAE约为5.0 m)。通过随机森林(RF)和卷积神经网络(CNN)模型,GPS和BDS均能实现较好的反演结果,最佳MAE均约为0.4 m。与英国TDS-1数据的反演结果相比,GPS反演精度在物理模型上提高约15%,验证了FY-3E GNOS-Ⅱ的全球导航卫星系统反射信号(GNSS-R)遥感数据的有效性。研究成果对于推广国产FY-3E的GNSS-R海面测高应用具有重要意义。

     

  • 图 1  FY-3E数据在2022年8月25日镜面反射点分布

    Figure 1.  Distribution of specular points for FY-3E data on August 25th, 2022

    图 2  FY-3E反射产品中典型的海面DDM图像

    Figure 2.  Typical sea surface DDM images in FY-3E reflection products

    图 3  星载GNSS-R测高几何路径延迟模型

    Figure 3.  Geometric path delay model for spaceborne GNSS-R altimetry

    图 4  星载GNSS-R测高的几何原理

    Figure 4.  Geometric schematic diagram of spaceborne GNSS-R altimetry

    图 5  插值后的多普勒频率为0的时延一维功率谱切片

    Figure 5.  One-dimensional power spectrum slice with zero Doppler shift after interpolation

    图 6  物理模型反演流程

    Figure 6.  Inversion proess of physical model

    图 7  机器学习数据处理流程及RF训练模型结构

    Figure 7.  Machine learning data processing process and random forest training model structure

    图 8  单个文件海面高度反演结果(BDS)

    Figure 8.  Single file sea surface height inversion results (BDS)

    图 9  单个文件海面高度反演结果(GPS)

    Figure 9.  Single file sea surface height inversion results (GPS)

    图 10  发射机为 BDS 时的误差(残差)地理分布(物理模型,2022年8月7日、12日和17日)

    Figure 10.  Geographical distribution of errors (residual) when transmitter is BDS (physical model, 2022-08-07, 2022-08-12, 2022-08-17)

    图 11  发射机为 GPS 时的误差(残差)地理分布(物理模型,2022年8月7日、12日和17日)

    Figure 11.  Geographical distribution of errors (residual) when transmitter is GPS (physical model, 2022-08-07, 2022-08-12, 2022-08-17)

    图 12  发射机为 BDS 时的误差(残差)地理分布(RF模型,2022年8月7日、12日和17日)

    Figure 12.  Geographical distribution of errors (residual) when transmitter is BDS (RF model, 2022-08-07,2022-08-12, 2022-08-17)

    图 13  发射机为 GPS 时的误差(残差)地理分布(RF模型,2022年8月7日、12日和17日)

    Figure 13.  Geographical distribution of errors (residual) when transmitter is GPS (RF model, 2022-08-07,2022-08-12, 2022-08-17)

    图 14  CNN模型结构

    Figure 14.  Structure of CNN model

    图 15  发射机为 BDS 时的误差(残差)地理分布(CNN模型,2022年8月7日、12日和17日)

    Figure 15.  Geographical distribution of errors (residual) when transmitter is BDS (CNN model, 2022-08-07,2022-08-12, 2022-08-17)

    图 16  发射机为 GPS 时的误差(残差)地理分布(CNN模型,2022年8月7日、12日和17日)

    Figure 16.  Geographical distribution of errors (residual) when transmitter is GPS (CNN model, 2022-08-07, 2022-08-12, 2022-08-17)

    表  1  BDS B1Ⅰ信号与GPS L1信号的比较

    Table  1.   Comparison between BDS B1Ⅰ signals and GPS L1 signals

    信号 频点/MHz 带宽/MHz 波长/m 调制方式 伪码速率/MHz 码片个数 码片宽度/μs
    BDS B1Ⅰ 1561.098 4.092 0.192 BPSK 2.046 2046 0.489
    GPS L1 1575.42 2.046 0.191 BPSK 1.023 1023 0.978
    下载: 导出CSV

    表  2  数据质量控制后的数据数量

    Table  2.   Amount of data after data quality control

    模型 BDS/
    GPS
    训练集数据量 反演数据量
    2022-08-01—
    2022-08-06
    2022-08-07 2022-08-12 2022-08-17
    机器学
    习模型
    BDS 266954 60912 50339 57926
    GPS 260100 54432 52695 45151
    物理模型 BDS 31784 24447 28800
    GPS 34135 31823 30368
    下载: 导出CSV

    表  3  物理模型反演结果精度

    Table  3.   Accuracy of physical model inversion results

    反演日期 MAE/m RMSE/m
    BDS GPS BDS GPS
    2022-08-07 2.635 5.539 3.702 6.801
    2022-08-12 2.812 5.260 3.939 6.468
    2022-08-17 3.501 4.702 4.631 5.867
    下载: 导出CSV

    表  4  RF模型反演结果的精度

    Table  4.   Accuracy of RF model inversion results

    预测日期 MAE/m RMSE/m
    BDS GPS BDS GPS
    2022-08-07 0.439 0.471 0.663 0.816
    2022-08-12 0.531 0.597 0.743 0.989
    2022-08-17 0.481 0.467 0.813 0.908
    下载: 导出CSV

    表  5  CNN模型反演结果精度

    Table  5.   Accuracy of CNN model prediction results

    预测日期 MAE/m RMSE/m
    BDS GPS BDS GPS
    2022-08-07 0.429 0.495 0.573 0.652
    2022-08-12 0.578 0.593 0.745 0.766
    2022-08-17 0.496 0.435 0.675 0.584
    下载: 导出CSV
  • [1] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12): 1507-1522.

    CHEN R Z, WANG L, LI D R, et al. A survey on the fusion of the navigation and the remote sensing techniques[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507-1522(in Chinese).
    [2] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-335.
    [3] 张云, 张杨阳, 孟婉婷, 等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报, 2020, 42(3): 149-156. doi: 10.3969/j.issn.0253-4193.2020.03.014

    ZHANG Y, ZHANG Y Y, MENG W T, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Haiyang Xuebao, 2020, 42(3): 149-156(in Chinese). doi: 10.3969/j.issn.0253-4193.2020.03.014
    [4] ZHANG Y, TIAN L M, MENG W T, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130-4140. doi: 10.1109/JSTARS.2015.2446684
    [5] ZHANG Y, LI B B, TIAN L M, et al. Phase altimetry using reflected signals from BeiDou GEO satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1410-1414. doi: 10.1109/LGRS.2016.2578361
    [6] 李黄, 夏青, 尹聪, 等. 我国GNSS-R遥感技术的研究现状与未来发展趋势[J]. 雷达学报, 2013, 2(4): 389-399. doi: 10.3724/SP.J.1300.2013.13080

    LI H, XIA Q, YIN C, et al. The current status of research on GNSS-R remote sensing technology in China and future development[J]. Journal of Radars, 2013, 2(4): 389-399(in Chinese). doi: 10.3724/SP.J.1300.2013.13080
    [7] 刘风玲, 张云, 孟婉婷, 等. UK-DMC卫星接收机GNSS反射信号的应用分析[J]. 遥感信息, 2015, 30(1): 90-95. doi: 10.3969/j.issn.1000-3177.2015.01.015

    LIU F L, ZHANG Y, MENG W T, et al. Application analysis of airborne GNSS reflected data from UK-DMC satellite receiver[J]. Remote Sensing Information, 2015, 30(1): 90-95(in Chinese). doi: 10.3969/j.issn.1000-3177.2015.01.015
    [8] CLARIZIA M P, RUF C, CIPOLLINI P, et al. First spaceborne observation of sea surface height using GPS-reflectometry[J]. Geophysical Research Letters, 2016, 43(2): 767-774. doi: 10.1002/2015GL066624
    [9] MASHBURN J, AXELRAD P, LOWE S T, et al. Global ocean altimetry with GNSS reflections from TechDemoSat-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4088-4097. doi: 10.1109/TGRS.2018.2823316
    [10] 张云, 马德皓, 孟婉婷, 等. 基于TechDemoSat-1卫星的GPS反射信号海面高度反演[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(10): 1941-1948.

    ZHANG Y, MA D H, MENG W T, et al. Sea surface height inversion of GPS reflected signal based on TechDemoSat-1 satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1941-1948(in Chinese).
    [11] WANG Q, ZHENG W, WU F, et al. A new GNSS-R altimetry algorithm based on machine learning fusion model and feature optimization to improve the precision of sea surface height retrieval[J]. Frontiers in Earth Science, 2021, 9: 730565. doi: 10.3389/feart.2021.730565
    [12] ZHANG Y, HUANG S, HAN Y L, et al. Machine learning methods for spaceborne GNSS-R sea surface height measurement from TDS-1[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1079-1088.
    [13] ZHANG Y, LU Q, JIN Q, et al. Global sea surface height measurement from CYGNSS based on machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 16: 841-852.
    [14] ZHANG P, HU X Q, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8. doi: 10.1007/s00376-021-1304-7
    [15] SUN Y Q, WANG X Y, DU Q F, et al. The status and progress of Fengyun-3E GNOS Ⅱ mission for GNSS remote sensing[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2019: 5181-5184.
    [16] YANG G L, BAI W H, WANG J S, et al. FY3E GNOS Ⅱ GNSS reflectometry: mission review and first results[J]. Remote Sensing, 2022, 14(4): 988. doi: 10.3390/rs14040988
    [17] ANDERSEN O B, KNUDSEN P. The DTU2010MSS mean sea surface in the arctic-for and with Cyrosat-2 data[J]. Cryosat Validation Workshop, 2011, 693: 28.
    [18] PICCIONI G, ANDERSEN O B, STENSENG L. SAR altimetry for mean sea surface determination in the arctic DTU15MSS[C]//Proceedings of the Sentinel-3 for Science Workshop. Venice : European Space Agency, 2015: 75.
    [19] GARRISON J L, KATZBERG S J. The application of reflected GPS signals to ocean remote sensing[J]. Remote Sensing of Environment, 2000, 73(2): 175-187. doi: 10.1016/S0034-4257(00)00092-4
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  92
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 录用日期:  2023-10-29
  • 网络出版日期:  2023-11-15
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答