留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PIV的冲压发动机喷管推力的重构测量方法

刘顺 孔祥瑞 徐惊雷 高波 刘海龙

刘顺,孔祥瑞,徐惊雷,等. 基于PIV的冲压发动机喷管推力的重构测量方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3385-3391 doi: 10.13700/j.bh.1001-5965.2023.0535
引用本文: 刘顺,孔祥瑞,徐惊雷,等. 基于PIV的冲压发动机喷管推力的重构测量方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3385-3391 doi: 10.13700/j.bh.1001-5965.2023.0535
LIU S,KONG X R,XU J L,et al. Reconstruction measurement method for ramjet nozzle thrust based on PIV[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3385-3391 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0535
Citation: LIU S,KONG X R,XU J L,et al. Reconstruction measurement method for ramjet nozzle thrust based on PIV[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3385-3391 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0535

基于PIV的冲压发动机喷管推力的重构测量方法

doi: 10.13700/j.bh.1001-5965.2023.0535
基金项目: 

国家自然科学基金(12202164);气动噪声控制重点实验室开放课题(ANCL20230307);安徽省博士后研究人员科研活动经费资助项目(2022B600)

详细信息
    通讯作者:

    E-mail:leo@ujs.edu.cn

  • 中图分类号: V211.71

Reconstruction measurement method for ramjet nozzle thrust based on PIV

Funds: 

National Natural Science Foundation of China (12202164); Open Project of Laboratory of Aerodynamic Noise Control (ANCL20230307); Anhui Province Postdoctoral Researcher Research Activity Funding Project (2022B600)

More Information
  • 摘要:

    冲压发动机喷管推力系数的准确测量十分重要。传统的测力天平受环境噪声等外界因素的影响较大,因此,考虑通过测量喷管出口截面的速度、压力和密度分布,直接根据定义获得推力系数。以典型过膨胀状态下单边膨胀喷管的复杂超声速内流场为研究对象,提出一套基于粒子图像测速(PIV)的多物理场和推力系数的非接触式重构测量方法。通过PIV虚拟实验,综合评估了所提方法的理论精度。结果表明:基于PIV测得的多物理场,利用定义式直接测得的喷管推力系数约为0.779,相比于参考值0.771,相对误差仅为1.04%,从而验证了所提方法的可行性和准确性。

     

  • 图 1  简化的SERN构型[18]

    Figure 1.  Simplified SERN configuration [18]

    图 2  数值计算与实验测量的结果对比

    Figure 2.  Comparison of CFD and experimental results

    图 3  重构方案示意图

    Figure 3.  Reconstruction scheme

    图 4  纯净数值速度场

    Figure 4.  Clean numerical velocity field

    图 5  重构压力场与CFD参考压力场的对比

    Figure 5.  Comparison of reconstructed pressure field and CFD reference pressure field

    图 6  PIV粒子合成图示例

    Figure 6.  Synthetic particle image of PIV

    图 7  虚拟PIV速度场的u/v分量及其对应的绝对误差

    Figure 7.  u/v components of synthetic PIV velocity field and corresponding absolute error distribution

    图 8  重构压力场及其相对误差分布

    Figure 8.  Reconstructed pressure field and corresponding relative error distribution

    图 9  竖直截面和壁面处重构压力分布与参考值的对比

    Figure 9.  Comparison of reconstructed pressure distributions and reference results at vertical sections and walls

  • [1] LV Z, XU J L, YU K K, et al. Experimental and numerical investigations of a scramjet nozzle at various operations[J]. Aerospace Science and Technology, 2020, 96: 105536. doi: 10.1016/j.ast.2019.105536
    [2] 汪丰, 徐惊雷, 汪阳生. 并联式TBCC排气系统模态转换过程的流场特性研究[J]. 实验流体力学, 2019, 33(3): 68-75. doi: 10.11729/syltlx20190037

    WANG F, XU J L, WANG Y S. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75(in Chinese). doi: 10.11729/syltlx20190037
    [3] HOHN O M, GÜLHAN A. Experimental investigation of sidewall compression and internal contraction in a scramjet inlet[J]. Journal of Propulsion and Power, 2017, 33(2): 501-513. doi: 10.2514/1.B36054
    [4] TANI K, KANDA T, KUDOU K J. Aerodynamic performance of scramjet inlet models with a single strut[J]. Journal of Propulsion and Power, 2006, 22(4): 905-912. doi: 10.2514/1.17774
    [5] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 2001, 17(2): 276-283. doi: 10.2514/2.5774
    [6] FLOCK A K, GÜLHAN A. Experimental investigation of the starting behavior of a three-dimensional scramjet intake[J]. AIAA Journal, 2015, 53(9): 2686-2693. doi: 10.2514/1.J053786
    [7] RAFFEL M, WILLERT C E, SCARANO F, et al. Particle image velocimetry: a practical guide[M]. Berlin: Springer, 2018.
    [8] XU J L, SHA J, SHI Z Y, et al. PIV experimental study and numerical simulation of the over-expanded SERN exit jet[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [9] XU J L, LIN C F, SHA J. Particle image velocimetry study of the impinging height effect on an overexpanded supersonic impinging free jet at Ma = 1.754. Part 1: global coherent structure[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2012, 226(1): 64-73. doi: 10.1177/0954410011406834
    [10] VAN OUDHEUSDEN B W. PIV-based pressure measurement[J]. Measurement Science and Technology, 2013, 24(3): 032001. doi: 10.1088/0957-0233/24/3/032001
    [11] BAUR T. PIV with high temporal resolution for the determination of local pressure reductions from coherent turbulence phenomena[C]//Proceedings of the 3rd International Workshop on PIV. Berlin: Springer, 1999: 101-106.
    [12] GURKA R, LIBERZON A, HEFETZ D, et al. Computation of pressure distribution using PIV velocity data[C]//Proceedings of the 3rd International Symposium on Particle Image Velocimetry. Bristol: Measurement Science & Technology , 1999, 2: 1-6.
    [13] ANDERSON J D. Fundamentals of aerodynamics[J]. AIAA Journal, 2010, 48(12): 2983-2983.
    [14] VAN OUDHEUSDEN B W. Principles and application of velocimetry-based planar pressure imaging in compressible flows with shocks[J]. Experiments in Fluids, 2008, 45(4): 657-674. doi: 10.1007/s00348-008-0546-9
    [15] LIU S, XU J L, YU K K. MacCormack’s technique-based pressure reconstruction approach for PIV data in compressible flows with shocks[J]. Experiments in Fluids, 2017, 58(6): 64. doi: 10.1007/s00348-017-2354-6
    [16] LIU S, XU J L. Assessment of pressure field and performance parameter reconstruction from velocity data for ramjet inlet[J]. Aerospace Science and Technology, 2021, 110: 106454. doi: 10.1016/j.ast.2020.106454
    [17] LIU S, XU J L, GONG H, et al. Assessment of streamline-based pressure reconstruction for PIV data in supersonic flows with shock waves[J]. Experiments in Fluids, 2020, 61(7): 161. doi: 10.1007/s00348-020-02999-3
    [18] YU Y, XU J L, MO J W, et al. Principal parameters in flow separation patterns of over-expanded single expansion RAMP nozzle[J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 274-288. doi: 10.1080/19942060.2014.11015513
    [19] THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: accuracy and enhanced algorithmsin PIVlab[J]. Journal of Open Research Software, 2021, 9(1): 12. doi: 10.5334/jors.334
  • 加载中
图(9)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  77
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 录用日期:  2023-09-23
  • 网络出版日期:  2023-11-07
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答