留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种考虑滑流效应的螺旋桨设计方法及应用

陈胜久 杨佑绪 张兴翠 吴逸飞

陈胜久,杨佑绪,张兴翠,等. 一种考虑滑流效应的螺旋桨设计方法及应用[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3578-3588 doi: 10.13700/j.bh.1001-5965.2023.0533
引用本文: 陈胜久,杨佑绪,张兴翠,等. 一种考虑滑流效应的螺旋桨设计方法及应用[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3578-3588 doi: 10.13700/j.bh.1001-5965.2023.0533
CHEN S J,YANG Y X,ZHANG X C,et al. A propeller design method considering slipstream effect and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3578-3588 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0533
Citation: CHEN S J,YANG Y X,ZHANG X C,et al. A propeller design method considering slipstream effect and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3578-3588 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0533

一种考虑滑流效应的螺旋桨设计方法及应用

doi: 10.13700/j.bh.1001-5965.2023.0533
基金项目: 

江西省“双千计划”人才项目(CK202006470)

详细信息
    通讯作者:

    E-mail:zgdy_1@163.com

  • 中图分类号: V211.44

A propeller design method considering slipstream effect and its application

Funds: 

Jiangxi Province "Double Thousand Plan" Talent Project (CK202006470)

More Information
  • 摘要:

    分布式电推进飞机大量采用螺旋桨,存在显著的桨-翼气动耦合效应。通过改变轴向诱导速度分布控制螺旋桨滑流,从而得到螺旋桨弦长和扭转角分布,提出一种考虑滑流效应的高效螺旋桨设计方法,并验证方法的可行性。计算所设计螺旋桨在孤立和分布式构型的巡航和悬停气动特性,并和最小诱导损失方法进行对比。结果表明:巡航升力系数相同时,所设计螺旋桨效率比最小诱导损失法高3.4%~6.6%;不同转速时,单独螺旋桨悬停效率比最小诱导损失法高10.4%~13.5%;分布式构型,设计螺旋桨悬停效率为比最小诱导损失法高13%。设计螺旋桨在巡航和悬停状态都能满足其设计要求,且都保持较高的效率运行。

     

  • 图 1  叶素速度三角形

    Figure 1.  Blade element velocity triangle

    图 2  滑流管模型

    Figure 2.  Slipstream tube model

    图 3  滑流管模型涡系在任意点P的诱导速度

    Figure 3.  Induced velocity of slipstream tube model vortex system at any point P

    图 4  螺旋桨快速设计流程

    Figure 4.  Fast design process of tilting propeller

    图 5  CST和MIL螺旋桨几何模型对比

    Figure 5.  Comparison of CST and MIL propeller geometric models

    图 6  不同螺旋桨弦长和扭转角分布

    Figure 6.  Distribution of different propeller chord lengths and twist angles

    图 7  螺旋桨性能系数对比

    Figure 7.  Comparison of propeller performance coefficients

    图 8  螺旋桨滑流轴向速度不同值对比

    Figure 8.  Comparison of axial induced velocity in propeller slipstream

    图 9  机翼、螺旋桨/机翼构型计算模型和坐标系定义

    Figure 9.  Wing, propeller/wing configuration calculation model and coordinate system definition

    图 10  3种构型气动系数-攻角曲线

    Figure 10.  Aerodynamic coefficient-angle of attack curves for three configurations

    图 11  不同设计方法设计的螺旋桨在不同攻角下的气动性能对比

    Figure 11.  Comparison of aerodynamic performance of propellers designed by different methods at different angles of attack

    图 12  2°攻角机翼上表面压力系数分布对比及近壁面流线分布

    Figure 12.  Comparison of pressure coefficient distribution on the upper surface of wing at 2° angle of attack and streamline distribution near wall

    图 13  x=0.28 m处的速度分布对比

    Figure 13.  Comparison of velocity distribution at x=0.28 m

    图 14  悬停状态的计算模型及坐标系定义

    Figure 14.  Calculation model of hover state and definition of coordinate system

    图 15  螺旋桨尾迹Q等值面

    Figure 15.  Q-criterion contour of propeller wake under hovering

    图 16  悬停构型x=0.2 m截面速度分布和表面流线分布

    Figure 16.  Velocity and surface streamline distribution for hovering configuration at x=0.2 m section

    表  1  不同螺旋桨巡航状态下的性能参数对比

    Table  1.   Comparison of performance parameters of different propellers in cruise state

    螺旋桨类型 拉力T/N 力矩Q/(N·m) 效率η/%
    CST螺旋桨 796 207 73.13
    MIL螺旋桨 841 224 71.67
    下载: 导出CSV

    表  2  分布式构型计算模型参数和计算条件

    Table  2.   Distributed configuration calculation model parameters and conditions

    参数 数值
    机翼展长/m 10
    机翼弦长/m 1
    螺旋桨半径R/m 0.48
    螺旋桨轮毂半径Rhub/m 0.096
    螺旋桨位置坐标 (0, ±5, 0.333)(0, ±3.74, 0.178)(0, ±2.48, 0.178)
    巡航速度V0/(m·s−1) 60
    巡航高度/m 500
    机翼攻角αw/(°) 0、2、4、6
    螺旋桨转速/(r·min−1) 3 000
    马赫数Ma 0.176
    雷诺数Re/106 7
    下载: 导出CSV

    表  3  3种构型升阻特性对比

    Table  3.   Comparison of lift and drag characteristics of three configurations

    攻角
    αw/(°)
    Cl Cd Cl/Cd
    构1 构2 构3 构1 构2 构3 构1 构2 构3
    0 0.69 0.028 24.80 0.83 0.032 26.33 0.83 0.031 26.53
    2 0.85 0.044 20.91 1.01 0.046 21.84 1.00 0.045 22.38
    4 1.01 0.057 17.71 1.18 0.064 18.52 1.17 0.062 18.79
    6 1.17 0.075 15.63 1.34 0.086 15.57 1.33 0.084 15.79
    下载: 导出CSV

    表  4  螺旋桨悬停状态的气动性能参数

    Table  4.   Aerodynamic performance parameters of propeller in hover state

    转速/(r·min−1) 拉力/N 悬停效率/%
    CST MIL CST MIL
    2 000 242 114 68.48 56.85
    2 500 383 180 68.62 58.23
    3 000 556 262 68.71 57.18
    3 500 765 356 68.68 56.02
    4 000 1 010 469 68.64 55.10
    下载: 导出CSV

    表  5  分布式构型悬停状态计算模型参数和计算条件

    Table  5.   Calculation model parameters and conditions for distributed configuration in hover state

    参数 数值
    螺旋桨坐标 (−0.045, ±5, 0.696)(−0.2, ±3.74, 0.696)(−0.2, ±2.48, 0.696)
    速度V1(m·s−1) 0
    转速/(r·min−1) 4 000
    雷诺数Re/106 2
    下载: 导出CSV

    表  6  螺旋桨悬停状态的气动性能参数

    Table  6.   Aerodynamic performance parameters of configuration 4 propeller in hover state

    类型 拉力/N 悬停效率/%
    CST MIL CST MIL
    Prop1 978 479 61.13 48.35
    Prop2 970 472 60.40 47.30
    Prop3 978 480 61.10 48.51
    Prop4 979 480 61.04 48.51
    Prop5 969 466 60.53 46.40
    Prop6 976 479 61.10 48.35
    下载: 导出CSV
  • [1] KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]//Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Reston: AIAA, 2018: 4998.
    [2] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 624037.

    HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037 ( in Chinese).
    [3] PATTERSON M D, DERLAGA J M, BORER N K. High-lift propeller system configuration selection for NASA's SCEPTOR distributed electric propulsion flight demonstrator[C]//Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 3922.
    [4] Patterson M D. Conceptual design of high-lift propeller systems for small electric aircraft[D]. Atlanta: Georgia Institute of Technology, 2016.
    [5] DROANDI G, ZANOTTI A, GIBERTINI G, et al. Experimental investigation of the rotor-wing aerodynamic interaction in a tiltwing aircraft in hover[J]. The Aeronautical Journal, 2015, 119(1215): 591-612. doi: 10.1017/S0001924000010708
    [6] SHUKLA D, KOMERATH N. Multirotor drone aerodynamic interaction investigation[J]. Drones, 2018, 2(4): 43. doi: 10.3390/drones2040043
    [7] STOKKERMANS T C A, USAI D, SINNIGE T, et al. Aerodynamic interaction effects between propellers in typical eVTOL vehicle configurations[J]. Journal of Aircraft, 2021, 58(4): 815-833. doi: 10.2514/1.C035814
    [8] Young L A, Derby M R. Rotor/wing interactions in hover, NASA/TM-2002-211392[R]. Washington D.C.: NASA, 2002.
    [9] Veldhuis L L. Review of propeller-wing aerodynamic interference[C]//Proceedings of the 24th International Congress of the Aeronautical Sciences. Beijing: ICAS, 2004: 2004-2006.
    [10] PATTERSON M D, BORER N K, GERMAN B. A simple method for high-lift propeller conceptual design[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 0770.
    [11] XUE C, ZHOU Z. Propeller-wing coupled aerodynamic design based on desired propeller slipstream[J]. Aerospace Science and Technology, 2020, 97: 105556. doi: 10.1016/j.ast.2019.105556
    [12] 范中允, 周洲, 祝小平. 一种可任意给定环量分布的螺旋桨设计方法[J]. 航空动力学报, 2019, 32(2): 434-441.

    FAN Z Y, ZHOU Z, ZHU X P. A design method for propeller with arbitrary circulation distribution[J]. Journal of Aerospace Power, 2019, 32(2): 434-441 (in Chinese).
    [13] 郭佳豪, 周洲, 范中允. 一种给定拉力分布的螺旋桨设计方法及应用[J]. 航空动力学报, 2020, 35(6): 1238-1246.

    GUO J H, ZHOU Z, FAN Z Y. A method of propeller design with given thrust distribution and it’s application[J]. Journal of Aerospace Power, 2020, 35(6): 1238-1246 (in Chinese).
    [14] D’ANGELO S, BERARDI F, MINISCI E. Aerodynamic performances of propellers with parametric considerations on the optimal design[J]. The Aeronautical Journal, 2002, 106(1060): 313-320. doi: 10.1017/S0001924000096068
    [15] 项松, 王吉, 张利国, 等. 一种高效率螺旋桨设计方法[J]. 航空动力学报, 2015, 30(1): 136-141.

    XIANG S, WANG J, ZHANG L G, et al. A design method for high efficiency propeller[J]. Journal of Aerospace Power, 2015, 30(1): 136-141 (in Chinese).
    [16] 唐伟, 宋笔锋, 张玉刚, 等. 两个设计点的螺旋桨气动性能[J]. 航空动力学报, 2017, 32(2): 354-363.

    TANG W, SONG B F, ZHANG Y G, et al. Aerodynamic performance of propeller with two design points[J]. Journal of Aerospace Power, 2017, 32(2): 354-363 (in Chinese).
    [17] ADKINS C N, LIEBECK R H. Design of optimum propellers[J]. Journal of Propulsion and Power, 1994, 10(5): 676-682. doi: 10.2514/3.23779
    [18] LARRABEE E E. Practical design of minimum induced loss propellers[J]. SAE Transactions, 1979: 2053-2062.
    [19] 薛臣, 周洲, 范中允, 等. 螺旋桨/机翼耦合下的目标螺旋桨滑流设计[J]. 航空动力学报, 2021, 36(1): 104-118.

    XUE C, ZHOU Z, FAN Z Y, et al. Design of target propeller slipstream under propeller-wing interaction[J]. Journal of Aerospace Power, 2021, 36(1): 104-118 (in Chinese).
    [20] VELDHUIS L L M. Propeller wing aerodynamic interference[D]. Delft: Technische Universiteit Delft, 2005.
    [21] DANTSKER O D, CACCAMO M, DETERS R W, et al. Performance testing of APC electric fixed-blade UAV propellers[C]//Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022: 4020.
    [22] 王适存. 直升机空气动力学[M]. 北京: 国防工业出版社, 1959.

    Wang S C, Helicopter aerodynamics[M]. Beijing: National Defence Industry Press, 1959.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  70
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-12-08
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答