留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氧火炬式电点火器出口火焰稳定性研究

杨进慧 王希杰 徐世洋 王晓丽

杨进慧,王希杰,徐世洋,等. 富氧火炬式电点火器出口火焰稳定性研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3368-3373 doi: 10.13700/j.bh.1001-5965.2023.0528
引用本文: 杨进慧,王希杰,徐世洋,等. 富氧火炬式电点火器出口火焰稳定性研究[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3368-3373 doi: 10.13700/j.bh.1001-5965.2023.0528
YANG J H,WANG X J,XU S Y,et al. Study on flame stability of oxygen-rich torch igniter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3368-3373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0528
Citation: YANG J H,WANG X J,XU S Y,et al. Study on flame stability of oxygen-rich torch igniter[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3368-3373 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0528

富氧火炬式电点火器出口火焰稳定性研究

doi: 10.13700/j.bh.1001-5965.2023.0528
基金项目: 

中国航天科技集团自主研发项目

详细信息
    通讯作者:

    E-mail:yangjinhui@cq5520.com

  • 中图分类号: V434.1

Study on flame stability of oxygen-rich torch igniter

Funds: 

Research Projects of China Aerospace Science and Technology Corporation

More Information
  • 摘要:

    富氧火炬式电点火器在低压、宽工况及推进剂入口温度大幅变化等极限工况下存在燃气温度偏低、不均匀及出口流速过快等火焰不稳定性现象。基于此,采用试验仿真方法研究了富氧火炬式电点火器缩进、扩口、扩口凹腔3种火焰稳定结构对出口火焰稳定性的影响。扩口凹腔结构将中心燃气向壁面引流,降低掺混区内流速延长燃气停留时间,并在凹腔结构内形成回流区促进补燃。极限工况下,相较于缩进结构,扩口凹腔结构火焰出口中心燃气温度下限由1 000 K提升至1 200 K,与设计工况温度差由高于100 K降至50 K以内,出口马赫数由1.4降至声速,有效提升了点火器的出口火焰稳定性。

     

  • 图 1  点火器火焰稳定结构示意图[10]

    Figure 1.  Torch igniter flame stability reburning chamber[10]

    图 2  网格无关性验证

    Figure 2.  Grid independence verification

    图 3  富氧点火器试验

    Figure 3.  Oxygen-rich torch igniter experiment

    图 4  富氧点火器试验曲线

    Figure 4.  Curves of oxygen-rich torch igniter experiments

    图 5  仿真模型验证

    Figure 5.  Validation of simulation model

    图 6  缩进补燃腔出口细铜丝烧断情况

    Figure 6.  Fusing of copper wire at recess reburning chamber outlet

    图 7  扩口凹腔结构的局部流场分布

    Figure 7.  Flow field distribution for flared cavity

    图 8  环境压力对火焰出口温度的影响

    Figure 8.  Effect of ambient pressure on flame temperature

    图 9  环境压力对火焰出口速度的影响

    Figure 9.  Effect of ambient pressure on flame velocity

    图 10  中心混合比对火焰出口温度的影响

    Figure 10.  Effect of central mixture ratio on flame temperature

    图 11  中心混合比对火焰出口速度的影响

    Figure 11.  Effect of central mixture ratio on flame velocity

    图 12  推进剂入口温度对火焰出口温度的影响

    Figure 12.  Effect of propellant inlet temperature on flame temperature

    图 13  推进剂入口温度对火焰出口速度的影响

    Figure 13.  Effect of propellant inlet temperature on flame velocity

  • [1] VAN LERBERGHE W M, EMDEE J L, FOUST R R. Enhanced reliability features of the RL10E-1 engine[J]. Acta Astronautica, 1997, 41(4-10): 197-207. doi: 10.1016/S0094-5765(98)00077-0
    [2] LIANG P Y. Modeling of SSME fuel preburner ASI[C]//Proceedings of the 10th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion. Washington, D. C. : NASA, 1992: 1013-1031.
    [3] FUKUSHIMA Y, LMOTO T. Lessons learned in the development of the LE-5 and LE-7[C]//Proceedings of the 30th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1994.
    [4] 吴宏斌. 国外氢氧火箭发动机的火药点火器和电点火器[J]. 导弹与航天运载技术, 1994(5): 32-42.

    WU H B. Pyrotechnic igniters and electrical spark igniters for LOX/LH2 rocket engines[J]. Missiles and Space Vehicles, 1994(5): 32-42(in Chinese).
    [5] 郑大勇, 陶瑞峰, 胡骏. 氢氧发动机真空点火及高空模拟试验[J]. 导弹与航天运载技术, 2014(5): 38-43.

    ZHENG D Y, TAO R F, HU J. Vacuum ignition characteristics and altitude simulation testing of the cryogenic LOX/LH2 rocket engine[J]. Missiles and Space Vehicles, 2014(5): 38-43(in Chinese).
    [6] WANG Y, YANG J H, CAI G B, et al. Effects of injection distance and droplet size on an LH2/LOX torch igniter[J]. Aerospace Science and Technology, 2022, 121: 107334. doi: 10.1016/j.ast.2022.107334
    [7] 杨进慧, 王朝晖, 左安军, 等. 氢氧火炬式电点火器燃烧流动分析[J]. 导弹与航天运载技术, 2019(3): 45-48.

    YANG J H, WANG Z H, ZUO A J, et al. Combustion flow analysis of the hydrogen-oxygen torch igniter[J]. Missiles and Space Vehicles, 2019(3): 45-48(in Chinese).
    [8] 王铁岩, 郑孟伟, 蔡振宇. 气氧甲烷火炬式点火器稳态仿真分析[J]. 导弹与航天运载技术, 2016(4): 63-66.

    WANG T Y, ZHENG M W, CAI Z Y. Steady-state simulation of GOX/methane spark torch igniter[J]. Missiles and Space Vehicles, 2016(4): 63-66(in Chinese).
    [9] 张锋, 于涵, 尚帅, 等. 气氧/气甲烷火炬式电点火器燃烧仿真与热试[J]. 火箭推进, 2022, 48(4): 36-42. doi: 10.3969/j.issn.1672-9374.2022.04.005

    ZHANG F, YU H, SHANG S, et al. Combustion simulation and hot-fire test of GOX/GCH4 spark torch igniter[J]. Journal of Rocket Propulsion, 2022, 48(4): 36-42(in Chinese). doi: 10.3969/j.issn.1672-9374.2022.04.005
    [10] 孙纪国, 王珏. 高混合比火炬式电点火器试验研究[J]. 推进技术, 2000, 21(1): 33-35. doi: 10.3321/j.issn:1001-4055.2000.01.010

    SUN J G, WANG J. Experimental study on high mixture ratio torch ignitor[J]. Journal of Propulsion Technology, 2000, 21(1): 33-35(in Chinese). doi: 10.3321/j.issn:1001-4055.2000.01.010
    [11] WU H, CHEN Q, SHAO W W, et al. Combustion of hydrogen in an experimental trapped vortex combustor[J]. Journal of Thermal Science, 2009, 18(3): 256-261. doi: 10.1007/s11630-009-0256-5
    [12] CHEN S, ZHAO D. Numerical study of non-reacting flowfields of a swirling trapped vortex ramjet combustor[J]. Aerospace Science and Technology, 2018, 74: 81-92. doi: 10.1016/j.ast.2018.01.006
    [13] LI M Y, HE X M, ZHAO Y L, et al. Effect of strut length on combustion performance of a trapped vortex combustor[J]. Aerospace Science and Technology, 2018, 76: 204-216. doi: 10.1016/j.ast.2018.02.019
    [14] CAI Z, WANG T Y, SUN M B. Review of cavity ignition in supersonic flows[J]. Acta Astronautica, 2019, 165: 268-286. doi: 10.1016/j.actaastro.2019.09.016
    [15] 马文杰, 孙明波, 邵文清, 等. 基于Driscoll凹腔稳焰模型的超声速燃烧火焰稳定尺度效应研究[J]. 推进技术, 2021, 42(8): 1865-1875.

    MA W J, SUN M B, SHAO W Q, et al. Scaling effect of supersonic combustion flame stabilization based on driscoll cavity blowout limits model[J]. Journal of Propulsion Technology, 2021, 42(8): 1865-1875(in Chinese).
    [16] 陈兴良, 景婷婷, 朱韶华, 等. 支板/凹腔组合稳焰器耦合机制研究[J]. 推进技术, 2022, 43(11): 198-207.

    CHEN X L, JING T T, ZHU S H, et al. Coupling mechanism of strut/cavity combined flame stabilizer[J]. Journal of Propulsion Technology, 2022, 43(11): 198-207(in Chinese).
    [17] SHI L, YANG X, YANG Y Y, et al. Experimental study on rocket jet-driven ignition and scramjet combustion in a kerosene-fueled RBCC combustor[J]. Aerospace Science and Technology, 2022, 126: 107643. doi: 10.1016/j.ast.2022.107643
    [18] 杨揖心. 后缘突扩型凹腔超声速流动模式与稳焰机理研究[D]. 长沙: 国防科技大学, 2018.

    YANG Y X. Study on supersonic flow pattern and flame stabilization mechanism of cavity with sudden expansion of trailing edge[D]. Changsha: National University of Defense Technology, 2018(in Chinese).
    [19] 丁猛. 基于凹腔的超声速燃烧火焰稳定技术研究[D]. 长沙: 国防科学技术大学, 2005.

    DING M. Study on flame stabilization technology of supersonic combustion based on concave cavity[D]. Changsha: National University of Defense Technology, 2005(in Chinese).
  • 加载中
图(13)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  59
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 录用日期:  2023-11-03
  • 网络出版日期:  2023-11-14
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答