留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心涡轮叶片残芯检测的双模成像方法

于洋懿 杨祎罡

于洋懿,杨祎罡. 空心涡轮叶片残芯检测的双模成像方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3443-3450 doi: 10.13700/j.bh.1001-5965.2023.0526
引用本文: 于洋懿,杨祎罡. 空心涡轮叶片残芯检测的双模成像方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3443-3450 doi: 10.13700/j.bh.1001-5965.2023.0526
YU Y Y,YANG Y G. Bi-modal imaging method for detection of residual core in hollow turbine blades[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3443-3450 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0526
Citation: YU Y Y,YANG Y G. Bi-modal imaging method for detection of residual core in hollow turbine blades[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3443-3450 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0526

空心涡轮叶片残芯检测的双模成像方法

doi: 10.13700/j.bh.1001-5965.2023.0526
基金项目: 

国家自然科学基金(11735008)

详细信息
    通讯作者:

    E-mail:yangyigang@mail.tsinghua.edu.cn

  • 中图分类号: V447.1;O571.53

Bi-modal imaging method for detection of residual core in hollow turbine blades

Funds: 

National Natural Science Foundation of China (11735008)

More Information
  • 摘要:

    空心涡轮叶片的残芯检测对于航空发动机的生产制造具有重要价值。目前,基于电子加速器的双模成像方法已经实现了中子与X射线的同光路融合成像,可以从材料属性角度对叶片的基体材料与残芯材料进行分辨。针对双模成像中的射线能谱硬化问题,采用自动分段阈值设定的方法,实现了无需了解叶片几何构造先验知识和人工参与判断,直接检测出叶片中残芯存在区域的自动化无损检测新方法。当单个像素的中子计数不低于104时,双模成像方法对残芯识别的误差不超过1%。

     

  • 图 1  含残芯空心涡轮叶片的X射线图像

    Figure 1.  X-ray image of hollow turbine blade containing residual core

    图 2  含残芯空心涡轮叶片的中子图像

    Figure 2.  Neutron image of hollow turbine blade containing residual core

    图 3  各元素的$ {B_{{\text{mat}}}} $值

    Figure 3.  $ {B_{{\text{mat}}}} $ values of each element

    图 4  基于电子加速器的双模成像测量示意图

    Figure 4.  Bi-modal imaging measurement based on e-LINAC

    图 5  纯基体材料与含有不同厚度残芯的概率密度分布

    Figure 5.  Probability density distribution of substrate and residual core materials with varying core thicknesses

    图 6  不同像素计数情况下(5 mm厚纯基体材料与含有200 μm残芯)的ROC曲线

    Figure 6.  ROC curves under different pixel counting conditions (5 mm thick pure substrate and 200 μm thick residual core)

    图 7  实验中子能谱和模拟X射线能谱

    Figure 7.  Experimental neutron energy spectrum and simulated X-ray energy spectrum

    图 8  被测量材料的特征

    Figure 8.  Characteristics of tested materials

    图 9  不同总计数下$ {B_{{\text{mat}}}} $与基体材料厚度的关系

    Figure 9.  Relationship between $ {B_{{\text{mat}}}} $ values and substrate thickness under different total counts

    图 10  双模成像装置

    Figure 10.  Bi-modal imaging system

    图 11  空心涡轮叶片样品实物、X射线成像结果和中子成像结果

    Figure 11.  Photo of hollow turbine blade and its X-ray and neutron imaging results

    图 12  质量厚度区间0.43~0.49 g/cm2内的测量数据与基体材料拟合分布

    Figure 12.  Distribution of measurement data and substrate material fitting in the mass thickness range of 0.43-0.49 g/cm2

    图 13  不同质量厚度叶片分层数据的处理及分析结果

    Figure 13.  Data processing and analysis results for layers of blades with various mass thickness

    表  1  利用X射线或中子进行残芯检测时的质量衰减系数、质量厚度和射线衰减数据

    Table  1.   Mass attenuation coefficient, mass thickness, and attenuation data for residual core inspection using X-rays and neutrons

    射线种类 质量衰减系数/(cm2·g−1) 典型质量厚度/(g·cm−2) 射线衰减 残芯衰减占比/%
    基体材料 残芯 基体材料 残芯 基体材料 残芯
    X射线 0.262 0.156 4.39 0.0540 1.156 0.0084 0.73
    中子 0.188 3.320 4.39 0.0540 1.004 0.1800 17.9
     注:表中X射线与中子的质量衰减系数根据清华大学9 MeV双模成像系统的能谱与ENDF/B-Ⅷ数据共同计算得到,其中,典型的基体材料厚度设定为5 mm,残芯厚度设定为200 μm。
    下载: 导出CSV

    表  2  双模成像装置参数

    Table  2.   Parameters of bi-modal imaging system

    电子加速器参数 数值 成像探测器参数 数值
    电子能量/MeV 9 探测器类型 nMCP
    重复频率/Hz 100 灵敏区尺寸/
    (mm×mm)
    95×95
    中子总产额/(n·s−1) 2×1011 分辨率/μm < 200
    中子通量(10 m飞行距离)/
    (cm−2·s−1)
    2500 读出方式 sCMOS
    光子通量(10 m飞行距离)/
    (cm−2·s−1)
    1.03×106 像素尺寸/μm ~50
    准直比 100/1 像素数/(像素×像素) 2160×2560
    下载: 导出CSV
  • [1] BARTON J P, FARNY G, PERSON J L, et al. Neutron radiography: proceedings of the second world conference Paris, France, June16-20, 1986[M]. Berlin: Springer, 1986: 16-20.
    [2] 李彪, 祝强, 金磊, 等. 空心涡轮叶片内腔残留型芯的检测技术[C]//2020中国铸造活动周论文集. 北京: 中国机械工程学会, 2020: 158-166.

    LI B, ZHU Q, JIN L, et al. Detection technologies for residual ceramic cores in hollow turbine blades[C]//Proceedings of the 2020 China Foundry Week. Beijing: Chinese Mechanical Engineering Society, 2020: 158-166(in Chinese).
    [3] 王婵, 李泽, 罗辅全, 等. 涡轮叶片内腔滞留物射线检测[C]//陕西省第十届无损检测年会论文集. 西安: 陕西省机械工程学会, 2006: 111-121.

    WANG C, LI Z, LUO F Q, et al. Turbine blade inner cavity stagnant material radiographic inspection[C]//Proceedings of the 10th Annual NDT Conference in Shaanxi Province. Xi’an: The Shaanxi Provincial Institute of Mechanical Engineering, 2006: 111-121(in Chinese).
    [4] 高祥熙, 尹伟, 顾国红, 等. 基于钆掺杂法的空心涡轮叶片残芯冷中子照相检测[J]. 无损检测, 2021, 43(6): 1-5.

    GAO X X, YIN W, GU G H, et al. Cold neutron radiography testing of residual core in hollow turbine blade based on gadolinium doping method[J]. Nondestructive Testing Technologying, 2021, 43(6): 1-5(in Chinese).
    [5] 王倩妮, 郭广平, 顾国红, 等. 航空发动机叶片残余型芯中子照相检测[J]. 失效分析与预防, 2021, 16(1): 76-82.

    WANG Q N, GUO G P, GU G H, et al. Neutron radiography detection of residual core in turbine blades[J]. Failure Analysis and Prevention, 2021, 16(1): 76-82(in Chinese).
    [6] GARBE U, AHUJA Y, IBRAHIM R, et al. Industrial application experiments on the neutron imaging instrument DINGO[J]. Physics Procedia, 2017, 88: 13-18. doi: 10.1016/j.phpro.2017.06.001
    [7] MARTZ H E, LOGAN C M, SCHNEBERK D J, et al. X-ray imaging: fundamentals, industrial techniques and applications[M]. Raton: CRC Press, 2016.
    [8] MAIER A, STEIDL S, CHRISTLEIN V, et al. Medical imaging systems: an introductory guide[M]. Beilin: Springer, 2018.
    [9] MCLEAN M. Nickel-base superalloys: current status and potential[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1995, 351(1697): 419-433. doi: 10.1098/rsta.1995.0044
    [10] YIP S. Nuclear radiation interactions[M]. Singapore: World Scientific Publishing Company, 2014.
    [11] BROWN D A, CHADWICK M B, CAPOTE R, et al. ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data[J]. Nuclear Data Sheets, 2018, 148: 1-142. doi: 10.1016/j.nds.2018.02.001
    [12] LEHMANN E H, MANNES D, KAESTNER A P, et al. The XTRA option at the NEUTRA facility: more than 10 years of bi-modal neutron and X-ray imaging at PSI[J]. Applied Sciences, 2021, 11(9): 3825. doi: 10.3390/app11093825
    [13] SINHA V, SRIVASTAVA A, LEE H K. A novel method for NDT applications using NXCT system at the Missouri University of Science & Technology[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 750: 43-55.
    [14] TENGATTINI A, LENOIR N, ANDÒ E, et al. NeXT-Grenoble, the neutron and X-ray tomograph in Grenoble[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 968: 163939. doi: 10.1016/j.nima.2020.163939
    [15] LAMANNA J M, HUSSEY D S, BALTIC E, et al. Neutron and X-ray tomography (NeXT) system for simultaneous, dual modality tomography[J]. Review of Scientific Instruments, 2017, 88(11): 113702. doi: 10.1063/1.4989642
    [16] 杨祎罡, 王学武, 张智, 等. 双模探测方法、控制器和系统: CN110779939B[P]. 2018-07-11.

    YANG Y G, WANG X W, ZHANG Z, et al. Bi-modal detection method, controller and system: CN110779939B[P]. 2018-07-11(in Chinese).
    [17] YU Y Y, ZHANG R Q, LU L, et al. The bimodal neutron and X-ray imaging driven by a single electron linear accelerator[J]. Applied Sciences, 2021, 11(13): 6050. doi: 10.3390/app11136050
    [18] BROOKS R A, DI CHIRO G. Beam hardening in X-ray reconstructive tomography[J]. Physics in Medicine and Biology, 1976, 21(3): 390-398. doi: 10.1088/0031-9155/21/3/004
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  59
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-17
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-10
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答