留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定危险区规避神经网络多段式弹道规划方法

谢蕃葳 王旭刚 顾镇镇

谢蕃葳,王旭刚,顾镇镇. 不确定危险区规避神经网络多段式弹道规划方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3515-3523 doi: 10.13700/j.bh.1001-5965.2023.0521
引用本文: 谢蕃葳,王旭刚,顾镇镇. 不确定危险区规避神经网络多段式弹道规划方法[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3515-3523 doi: 10.13700/j.bh.1001-5965.2023.0521
XIE F W,WANG X G,GU Z Z. Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3515-3523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0521
Citation: XIE F W,WANG X G,GU Z Z. Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3515-3523 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0521

不确定危险区规避神经网络多段式弹道规划方法

doi: 10.13700/j.bh.1001-5965.2023.0521
基金项目: 

中央高校基本科研业务费专项资金(30919011401)

详细信息
    通讯作者:

    E-mail:wxgnets@163.com

  • 中图分类号: TJ413.+6

Multi-stage trajectory planning method for hazard zone avoidance under uncertainty based on neural networks

Funds: 

The Fundamental Research Funds for the Central Universities (30919011401)

More Information
  • 摘要:

    基于最优控制的弹道规划方法可以最大程度地发挥出超远程滑翔制导炮弹的飞行能力,然而在面对不确定的战场环境时,这种数值方法耗时、不易收敛的缺点导致其难以在线应用。针对这一问题,提出一种深度神经网络弹道规划方法,利用深度神经网络的非线性映射能力近似伪谱法计算模型以减少弹载计算机的运算负荷。根据弹体和环境的多种随机状态,在3维空间内以多阶段高斯伪谱法(MGPM)基于连续性条件将准接触点连接起来,形成满足路径约束的射程最优弹道样本数据库;以最优弹道数据样本库为基础,深度神经网络离线学习弹体在不同状态下的最优动作,以此映射出最优弹道规划计算模型。仿真结果表明:所提方法可以在随机状态下快速生成近似最优轨迹,具有良好的实时性和鲁棒性,可适用于解决在线弹道规划问题。

     

  • 图 1  远程滑翔制导炮弹作战示意图

    Figure 1.  Long-range glide-guided projectile operation

    图 2  规划曲线在禁飞区附近的配点状态

    Figure 2.  Distribution state of planning curve near no-fly zone

    图 3  示例弹道仿真

    Figure 3.  Example ballistic simulation

    图 4  弹道数据样本库

    Figure 4.  Ballistic data sample library

    图 5  在不同学习率下的DNN训练损失变化

    Figure 5.  Variation of DNN training loss under different learning rates

    图 6  100组蒙特卡罗仿真实验

    Figure 6.  100 sets of Monte Carlo simulation experiments

    图 7  25 s后两种弹道规划方法的偏差散点图

    Figure 7.  Trajectory planning error scatter plot after 25 s

    图 8  随规划时间变化的平均偏差

    Figure 8.  Average deviation over planning time

    图 9  多段式全过程弹道规划

    Figure 9.  Multi-stage ballistic planning

    表  1  控制约束参数

    Table  1.   Control constraint parameters

    参数 数值
    $[{\alpha _{\min }},{\alpha _{\max }}]/(^\circ )$ [0,12]
    $[{\beta _{\min }},{\beta _{\max }}]/(^\circ )$ [−12,12]
    下载: 导出CSV

    表  2  初始状态参数

    Table  2.   Initial state parameters

    参数 数值
    $v/({\text{m}} \cdot {{\text{s}}^{{{ - 1}}}})$ [1450,1550]
    $\theta /(^\circ )$ [−3,3]
    $ {\psi _{\text{v}}}/(^\circ ) $ [−3,3]
    $y/{\text{km}}$ [28,32]
    ${\textit{z}}/{\text{km}}$ [−1,1]
    ${v_{\text{f}}}/\left( {{\text{m}} \cdot {{\text{s}}^{{{ - 1}}}}} \right)$ [300,350]
    下载: 导出CSV

    表  3  危险区状态参数

    Table  3.   Danger zone status parameters

    参数 数值
    $x_{\mathrm{d}}^1/{\text{km}}$ [100,130]
    $x_{\mathrm{d}}^2/{\text{km}}$ [130,160]
    ${\textit{z}}_{\mathrm{d}}^1/{\text{km}}$ [−10,10]
    ${\textit{z}}_{\mathrm{d}}^2/{\text{km}}$ [−10,10]
    $r_{\mathrm{d}}^1/{\text{km}}$ [30,40]
    $r_{\mathrm{d}}^2/{\text{km}}$ [20,30]
    下载: 导出CSV

    表  4  RMSE最优网络性能

    Table  4.   Optimal network performance based on RMSE

    学习率$ {\xi } $ RMSE
    0.0001 0.0536
    0.0005 0.0320
    0.001 0.0265
    0.003 0.0585
    下载: 导出CSV

    表  5  起始状态参数和战场环境参数设置

    Table  5.   Settings of starting state parameters and battlefield environment parameters

    参数设置 数值
    高度位置y/m 30000
    偏移位置z/m 0
    起始速度v/(m·s−1) 1500
    起始弹道倾角$\theta /(^\circ )$ 0
    起始弹道偏角${\psi _v}/(^\circ )$ 0
    落速约束${v_{\text{f}}}/\left( {{\text{m}} \cdot {{\text{s}}^{{\text{ - 1}}}}} \right)$ 330
    危险区1位置$ \left( {x_{\text{d}}^{\text{1}},{\textit{z}}_{\text{d}}^{\text{1}},r_{\text{d}}^{\text{1}}} \right)/{\text{km}} $ (110,10,30)
    危险区2位置$\left( {x_{\text{d}}^{\text{2}},{\textit{z}}_{\text{d}}^{\text{2}},r_{\text{d}}^{\text{2}}} \right)/{\text{km}}$ (160,−5,20)
    下载: 导出CSV

    表  6  DNN和MGPM在每阶段结束后的数值差

    Table  6.   Difference between DNN and MGPM at the end of each stage

    阶段 $\Delta x/{\mathrm{m}}$ $\Delta y/{\mathrm{m}}$ $\Delta {\textit{z}}/{\mathrm{m}}$ $\Delta \theta $/(°) $\Delta {\psi _v} $/(°) $\Delta v/({\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}})$
    Phase 1 83.28 43.89 56.79 0.10 0.00 1.77
    Phase 2 −5.53 69.58 24.09 0.15 0.08 −3.52
    Phase 3 18.17 91.55 63.50 0.19 −0.14 −2.03
    Phase 4 0.00 53.03 63.43 0.08 −0.23 −0.42
    Phase 5 −60.09 4.54 −43.20 0.51 −0.26 −10.69
    Phase 6 −57.86 24.07 −10.35 0.03 −0.21 −7.14
    Phase 7 −17.65 15.84 12.28 −0.14 −0.27 −1.98
    Phase 8 9.15 −1.89 65.98 −0.16 −0.73 1.83
    Phase 9 −33.29 28.03 71.96 −0.03 1.20 0.59
    Phase 10 −39.32 −28.61 125.19 −0.02 −1.86 −1.36
    Phase 11 −113.22 −36.39 −3.32 1.36 −0.87 −5.64
    Phase 12 −37.82 −133.62 42.23 −7.35 −0.88 9.06
    Phase 13 35.80 0.00 −26.37 −0.37 0.90 −3.85
    下载: 导出CSV
  • [1] 沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35(3): 593-606.

    SHEN L C, CHEN J, WANG N. Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 593-606 (in Chinese).
    [2] BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207. doi: 10.2514/2.4231
    [3] SHIRAZI A, CEBERIO J, LOZANO J A. Spacecraft trajectory optimization: a review of models, objectives, approaches and solutions[J]. Progress in Aerospace Sciences, 2018, 102: 76-98. doi: 10.1016/j.paerosci.2018.07.007
    [4] 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报, 2020, 41(1): 023377.

    ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023377 (in Chinese).
    [5] 黄长强, 国海峰, 丁达理. 高超声速滑翔飞行器轨迹优化与制导综述[J]. 宇航学报, 2014, 35(4): 369-379.

    HUANG C Q, GUO H F, DING D L. A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J]. Journal of Astronautics, 2014, 35(4): 369-379 (in Chinese).
    [6] ZHAO J, ZHOU R. Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1544-1553. doi: 10.1016/j.cja.2013.10.009
    [7] 刘超越, 张成. 基于高斯伪谱法的二级助推战术火箭多阶段轨迹优化[J]. 兵工学报, 2019, 40(2): 292-302.

    LIU C Y, ZHANG C. Multi-stage trajectory optimization of tactical two-stage booster rocket based on Gauss pseudospectral method[J]. Acta Armamentarii, 2019, 40(2): 292-302 (in Chinese).
    [8] SU Y, DAI Y, LIU Y. A hybrid hyper-heuristic whale optimization algorithm for reusable launch vehicle reentry trajectory optimization[J]. Aerospace Science and Technology, 2021, 119: 107200. doi: 10.1016/j.ast.2021.107200
    [9] CHAI R Q, SAVVARIS A, TSOURDOS A, et al. Optimal tracking guidance for aeroassisted spacecraft reconnaissance mission based on receding horizon control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1575-1588. doi: 10.1109/TAES.2018.2798219
    [10] CONWAY B A. A survey of methods available for the numerical optimization of continuous dynamic systems[J]. Journal of Optimization Theory and Applications, 2012, 152(2): 271-306. doi: 10.1007/s10957-011-9918-z
    [11] 杨希祥, 李晓斌, 肖飞, 等. 智能优化算法及其在飞行器优化设计领域的应用综述[J]. 宇航学报, 2009, 30(6): 2051-2061. doi: 10.3873/j.issn.1000-1328.2009.06.001

    YANG X X, LI X B, XIAO F, et al. Overview of intelligent optimization algorithm and its application in flight vehicles optimization design[J]. Journal of Astronautics, 2009, 30(6): 2051-2061 (in Chinese). doi: 10.3873/j.issn.1000-1328.2009.06.001
    [12] 黄旭星, 李爽, 杨彬, 等. 人工智能在航天器制导与控制中的应用综述[J]. 航空学报, 2021, 42(4): 524201.

    HUANG X X, LI S, YANG B, et al. Spacecraft guidance and control based on artificial intelligence: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524201 (in Chinese).
    [13] 魏毅寅, 郝明瑞, 范宇. 人工智能技术在宽域飞行器控制中的应用[J]. 宇航学报, 2023, 44(4): 530-537. doi: 10.3873/j.issn.1000-1328.2023.04.007

    WEI Y Y, HAO M R, FAN Y. The application of artificial intelligence technology in wide-field vehicle control[J]. Journal of Astronautics, 2023, 44(4): 530-537 (in Chinese). doi: 10.3873/j.issn.1000-1328.2023.04.007
    [14] EFFATI S, PAKDAMAN M. Optimal control problem via neural networks[J]. Neural Computing and Applications, 2013, 23(7): 2093-2100.
    [15] SHI J L, WANG J B, SU L F, et al. A neural network warm-started indirect trajectory optimization method[J]. Aerospace, 2022, 9(8): 435. doi: 10.3390/aerospace9080435
    [16] LI X, WANG L, WANG H, et al. A warm-started trajectory planner for fixed-wing unmanned aerial vehicle formation[J]. Applied Mathematical Modelling, 2023, 122: 200-219. doi: 10.1016/j.apm.2023.05.035
    [17] SÁNCHEZ-SÁNCHEZ C, IZZO D. Real-time optimal control via deep neural networks: study on landing problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1122-1135. doi: 10.2514/1.G002357
    [18] CHENG L, WANG Z B, JIANG F H, et al. Fast generation of optimal asteroid landing trajectories using deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2642-2655.
    [19] WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications, 2023, 35(9): 6383-6404. doi: 10.1007/s00521-022-08024-4
    [20] CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Real-time reentry trajectory planning of hypersonic vehicles: a two-step strategy incorporating fuzzy multiobjective transcription and deep neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): 6904-6915.
    [21] DAI P, FENG D Z, FENG W H, et al. Entry trajectory optimization for hypersonic vehicles based on convex programming and neural network[J]. Aerospace Science and Technology, 2023, 137: 108259. doi: 10.1016/j.ast.2023.108259
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  44
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-24
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答