留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微型直接甲醇燃料电池多级退化参量融合预测

董杰 苏雨临 张大骋

董杰,苏雨临,张大骋. 微型直接甲醇燃料电池多级退化参量融合预测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3567-3577 doi: 10.13700/j.bh.1001-5965.2023.0517
引用本文: 董杰,苏雨临,张大骋. 微型直接甲醇燃料电池多级退化参量融合预测[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3567-3577 doi: 10.13700/j.bh.1001-5965.2023.0517
DONG J,SU Y L,ZHANG D C. Ensemble-based prediction using multi-level degradation parameters for micro direct methanol fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3567-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0517
Citation: DONG J,SU Y L,ZHANG D C. Ensemble-based prediction using multi-level degradation parameters for micro direct methanol fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3567-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0517

微型直接甲醇燃料电池多级退化参量融合预测

doi: 10.13700/j.bh.1001-5965.2023.0517
基金项目: 

国家自然科学基金(62103174);云南省基础研究计划(202202AD080006)

详细信息
    通讯作者:

    E-mail:dacheng.zhang@kust.edu.cn

  • 中图分类号: TM911.4

Ensemble-based prediction using multi-level degradation parameters for micro direct methanol fuel cells

Funds: 

National Natural Science Foundation of China (62103174); Yunnan Fundamental Research Projects (202202AD080006)

More Information
  • 摘要:

    微型直接甲醇燃料电池(µDMFC)膜电极性能会随运行时间和工况衰退,影响其效率和使用寿命。准确的健康状态(SOH)估计与剩余使用寿命(RUL)预测可以确保µDMFC安全运行。输出电压的退化趋势受运行工况影响而波动,传统基于退化趋势回归的预测方法无法准确捕获这种随机变化。在数据驱动和机理模型相结合的思路下,提出基于输出电压和等效电路模型(ECM)的RUL融合预测方法。针对动态工况,引入负载电流这一退化协变量,利用随机过程重构了未来时刻的负载变化,结合ECM参量的退化趋势,实现对输出电压的准确估计和RUL预测,并在中国轻型汽车测试工况(CLTC)下进行验证。实验结果表明:基于多级退化参量的融合预测方法能更好地适应变工况,RUL预测精度、准确度分别为88.18%和85.71%,高于单一退化模型最优值3.27%和14.28%。

     

  • 图 1  直接甲醇燃料电池单芯结构

    Figure 1.  Structure of µDMFC single cell

    图 2  直接甲醇燃料电池加速老化测试平台

    Figure 2.  µDMFC accelerated aging test platform

    图 3  不同甲醇溶液浓度的输出性能比较

    Figure 3.  Output performance comparison with different methanol concentrations

    图 4  µDMFC一次放电循环

    Figure 4.  A discharge cycle of µDMFC

    图 5  µDMFC输出电压

    Figure 5.  µDMFC output voltage

    图 6  不同时刻EIS测量示例

    Figure 6.  EIS measurement examples at different time

    图 7  LSTM神经元结构

    Figure 7.  LSTM neuron structure

    图 8  µDMFC的典型电化学阻抗谱

    Figure 8.  Typical EIS of µDMFC

    图 9  等效电路模型

    Figure 9.  Equivalent circuit model

    图 10  负载电流重构的马尔可夫链

    Figure 10.  Markov chain-based load current reconstruction

    图 11  tp= 600 h时刻的重构电流

    Figure 11.  Current reconstruction at tp=600 h

    图 12  RUL 预测原理

    Figure 12.  RUL prediction illustration

    图 13  tp=600 h时刻基于外部电压的RUL预测

    Figure 13.  DTM-based RUL prediction at tp=600 h

    图 14  电化学阻抗谱拟合示例

    Figure 14.  EIS fitting example

    图 15  tp=600 h时刻基于电化学阻抗谱的参量估计与预测

    Figure 15.  EIS-based covariate estimation at tp=600 h

    图 16  tp=600 h时刻基于等效电路模型的RUL预测

    Figure 16.  ECM-based RUL prediction at tp=600 h

    图 17  基于模型融合预测的技术路线

    Figure 17.  Model ensemble-based prediction framework

    图 18  tp=600 h时刻模型1与模型2融合的RUL预测

    Figure 18.  Ensemble-based RUL prediction (Model 1 and Model 2) at tp=600 h

    图 19  不同模型的RUL预测结果

    Figure 19.  RUL prediction results by different models

    图 20  不同模型预测时长比较

    Figure 20.  Time complexity comparison of different models

    表  1  基于CLTC工况的负载电流设置

    Table  1.   Load current settings based on CLTC operating conditions

    速度区间运行状态占比/%平均车速/(km·h−1)实验负载电流/A
    低速减速23.6711.850.018
    匀速21.3624.910.038
    加速22.1835.020.053
    怠速32.7900
    中速减速26.6744.520.068
    匀速28.2955.530.089
    加速27.3262.490.096
    怠速17.7200
    高速减速19.5675.130.114
    匀速57.1187.710.133
    加速19.7890.920.138
    怠速3.5600
    下载: 导出CSV

    表  2  不同时间的 ECM 模型参数识别结果示例

    Table  2.   ECM parameters identification results at different time

    时间/hEr/VR1R2R3R4R5
    00.7240.5310.2804.5301.9401.290
    900.7170.5901.2205.2502.7200.551
    1900.7050.6151.0105.5602.6601.460
    2500.6780.6350.7195.9203.0001.680
    3400.6390.6201.5506.4903.3401.770
    下载: 导出CSV

    表  3  各模型 RUL 预测性能评价结果

    Table  3.   Prognostic performance evaluation for different models

    模型 Acc/% $\alpha_ {A_{\mathrm{c}} } $/% 平均预测时长/s
    模型1 77.87 33.33 50.20
    模型2 84.91 71.43 143.91
    模型1与模型2融合 88.18 85.71 146.11
    下载: 导出CSV
  • [1] JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. doi: 10.1038/s41586-021-03482-7
    [2] MARAPPAN M, PALANISWAMY K, VELUMANI T, et al. Performance studies of proton exchange membrane fuel cells with different flow field designs–review[J]. The Chemical Record, 2021, 21(4): 663-714. doi: 10.1002/tcr.202000138
    [3] ESMAEILI N, GRAY E M, WEBB C J. Non‐fluorinated polymer composite proton exchange membranes for fuel cell applications: a review[J]. ChemPhysChem, 2019, 20(16): 2016-2053. doi: 10.1002/cphc.201900191
    [4] LEE J, WU F J, ZHAO W Y, et al. Prognostics and health management design for rotary machinery systems: reviews, methodology and applications[J]. Mechanical Systems and Signal Processing, 2014, 42(1-2): 314-334. doi: 10.1016/j.ymssp.2013.06.004
    [5] LI X, ZHANG W, DING Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction[J]. Reliability Engineering & System Safety, 2019, 182: 208-218.
    [6] 刘浩. 质子交换膜燃料电池的寿命预测研究[D]. 杭州: 浙江大学, 2019: 1-14.

    LIU H. Study on life prediction of proton exchange membrane fuel cell[D]. Hangzhou: Zhejiang University, 2019: 1-14 (in Chinese).
    [7] ZHANG D, CADET C, BÉRENGUER C, et al. Some improvements of particle filtering based prognosis for PEM fuel cells[J]. IFAC-PapersOnLine, 2016, 49(28): 162-167. doi: 10.1016/j.ifacol.2016.11.028
    [8] FUTTER G A, LATZ A, JAHNKE T. Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: influence of pressure, relative humidity and cell voltage[J]. Journal of Power Sources, 2019, 410: 78-90.
    [9] JOUIN M, GOURIVEAU R, HISSEL D, et al. Prognostics of PEM fuel cell in a particle filtering framework[J]. International Journal of Hydrogen Energy, 2014, 39(1): 481-494. doi: 10.1016/j.ijhydene.2013.10.054
    [10] VICHARD L, HAREL F, RAVEY A, et al. Degradation prediction of PEM fuel cell based on artificial intelligence[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14953-14963. doi: 10.1016/j.ijhydene.2020.03.209
    [11] DONG H C, JIN X N, LOU Y B, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114-123. doi: 10.1016/j.jpowsour.2014.07.176
    [12] ZHANG D, BARALDI P, CADET C, et al. An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells[J]. Mechanical Systems and Signal Processing, 2019, 124: 479-501. doi: 10.1016/j.ymssp.2019.01.060
    [13] ZHAO Z G, ZHANG F, ZHANG Y H, et al. Performance optimization of μDMFC with foamed stainless steel cathode current collector[J]. Energies, 2021, 14(20): 6608. doi: 10.3390/en14206608
    [14] 薛瑞. 微型直接甲醇燃料电池高浓度传质阻挡层技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 46-62.

    XUE R. Research on the mass transfer barrier layer of concentrated direct methanol fuel cell[D]. Harbin: Harbin Institute of Technology, 2019: 46-62(in Chinese).
    [15] LIU Y, WU Z X, ZHOU H, et al. Development of China light-duty vehicle test cycle[J]. International Journal of Automotive Technology, 2020, 21(5): 1233-1246. doi: 10.1007/s12239-020-0117-5
    [16] 王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京麻豆精品秘 国产传媒学报, 2018, 44(4): 772-784.

    WANG X, WU J, LIU C, et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 772-784(in Chinese).
    [17] PASTOR-FERNÁNDEZ C, DHAMMIKA WIDANAGE W, MARCO J, et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique[C]//Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo. Piscataway: IEEE Press, 2016: 1-6.
    [18] YUAN T, ZOU Z Q, CHEN M, et al. New anodic diffusive layer for passive micro-direct methanol fuel cell[J]. Journal of Power Sources, 2009, 192(2): 423-428. doi: 10.1016/j.jpowsour.2009.03.032
    [19] SØRENSEN T S, KJELSTRUP S. A simple Maxwell-Wagner-Butler-Volmer approach to the impedance of the hydrogen electrode in a Nafion fuel cell[J]. Journal of Colloid and Interface Science, 2002, 248(2): 355-375. doi: 10.1006/jcis.2001.8210
    [20] ZHU Y L, GAO L, LI J Y. A novel button-type micro direct methanol fuel cell with graphene diffusion layer[J]. Micromachines, 2019, 10(10): 658. doi: 10.3390/mi10100658
    [21] YUAN T, YANG J, WANG Y L, et al. Anodic diffusion layer with graphene-carbon nanotubes composite material for passive direct methanol fuel cell[J]. Electrochimica Acta, 2014, 147: 265-270. doi: 10.1016/j.electacta.2014.09.124
    [22] JIANWEI G, ZONGQIANG M, JINGMING X. Studies on the electrochemical behavior of polymer electrolyte membrane fuel cell (PEMFC) by AC impedance method[J]. Chemical Journal of Chinese Universities, 2003, 24(8): 1477-1481.
    [23] KIM T, KIM H, HA J, et al. A degenerated equivalent circuit model and hybrid prediction for state-of-health (SOH) of PEM fuel cell[C]//Proceedings of the 2014 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2014: 1-7.
    [24] 苏雨临, 连冠, 张大骋. 等效电路模型法预测动态工况下微型直接甲醇燃料电池剩余使用寿命[J]. 上海交通大学学报, 2024, 58(10): 1525-1532.

    SU Y L, LIAN G, ZHANG D C. Equivalent circuit model-based prognostics for micro direct methanol fuel cell under dynamic operating conditions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1525-1532(in Chinese).
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  58
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-10-20
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答