留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火箭推进剂连接器在脉动风载下非合作自动对接策略

李泳峄 王南 吴新跃 吴鹏辉 姚博丹

李泳峄,王南,吴新跃,等. 火箭推进剂连接器在脉动风载下非合作自动对接策略[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3415-3423 doi: 10.13700/j.bh.1001-5965.2023.0506
引用本文: 李泳峄,王南,吴新跃,等. 火箭推进剂连接器在脉动风载下非合作自动对接策略[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3415-3423 doi: 10.13700/j.bh.1001-5965.2023.0506
LI Y Y,WANG N,WU X Y,et al. Non-cooperative automatic docking strategy of propellant umbilical connector for launch vehicle under fluctuating wind load[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3415-3423 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0506
Citation: LI Y Y,WANG N,WU X Y,et al. Non-cooperative automatic docking strategy of propellant umbilical connector for launch vehicle under fluctuating wind load[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3415-3423 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0506

火箭推进剂连接器在脉动风载下非合作自动对接策略

doi: 10.13700/j.bh.1001-5965.2023.0506
详细信息
    通讯作者:

    E-mail:lgslyy@126.com

  • 中图分类号: V553.1;V554+.5

Non-cooperative automatic docking strategy of propellant umbilical connector for launch vehicle under fluctuating wind load

More Information
  • 摘要:

    为解决运载火箭推进剂连接器在脉动风载激励干扰下与箭上接口的动态非合作自动对接问题,提高自动对接系统鲁棒性及响应速度。分析连接器自动对接任务剖面,制定了由检测、控制、位姿调整单元等组成的技术路线;分析脐带臂风载激励响应特性,获得了平均风速分别为10 m/s、15 m/s、20 m/s脉动风载激励下脐带臂的摆动情况;通过自动对接仿真模型开展常规PID、PID+干扰观测器、分段PID+干扰观测器控制策略仿真对比分析,搭建自动对接联合试验系统,进行控制策略验证,成功完成了自动对接全流程试验。结果表明:分段PID+干扰观测器控制策略能有效降低脉动风载激励下脐带臂摆动对自动对接的干扰影响,跟踪性能改善效果明显,对接可靠,各工况下对接跟踪误差均在±38 mm以内,完成对接时间不超过3 min。

     

  • 图 1  推进剂连接器自动对接应用示意

    Figure 1.  Automatic docking application of umbilical connectors

    图 2  脐带臂模块(含管路、对接装置等)示意图

    Figure 2.  Umbilical arm module (including pipeline and docking device) diagram

    图 3  顺风向脉动风载激励下脐带臂摆动位移时程片段

    Figure 3.  Displacement response of umbilical arm under fluctuating wind load in downwind direction

    图 4  自动对接装置技术方案图

    Figure 4.  Technical scheme of umbilical connector automatic docking device

    图 5  自动对接系统联合仿真模型

    Figure 5.  Co-simulation model of automatic docking system

    图 6  不同控制策略下跟踪误差对比

    Figure 6.  Comparison of tracking errors under different control strategies

    图 7  脐带臂模拟装置

    1. 底座; 2. 水平移动座; 3. 水平弹簧组;4. 垂直弹簧组;5. 对接装置安装座。

    Figure 7.  Analog device of umbilical arm

    图 8  脐带臂模拟装置摆动位移理论、试验值对比

    Figure 8.  Comparison between theoretical and experimental swinging displacements of umbilical arm

    图 9  自动对接联合试验系统

    1. 自动对接装置; 2. 连接器; 3. 脐带臂模拟装置; 4. 箭上接口; 5. 箭体模拟运动台; 6. 底座。

    Figure 9.  Automatic docking co-experimental system

    图 10  脉动风载激励干扰下自动对接试验过程

    Figure 10.  Automatic docking process under fluctuating wind load disturbance

  • [1] 何家声. 航天发射地面支持技术[M]. 北京: 北京理工大学出版社, 2015.

    HE J S. Space launch ground support technology[M]. Beijing: Beijing Insititute of Technology Press, 2015(in Chinese).
    [2] 符锡理. 运载火箭脐带自动脱落连接器[J]. 国外导弹与航天运载器, 1988(9): 60-67.

    FU X L. Automatic drop connector for umbilical cord of launch vehicle[J]. Missiles and Space Vehicles, 1988(9): 60-67(in Chinese).
    [3] DANDAGE S R, HERMAN N A, GODFREY S E, et al. Design and development of the space shuttle tail service masts: NASA-1979-21357[R]. Washington, D. C. : NASA, 1979.
    [4] National Aeronautics and Space Administration. The perfect mate for safe fueling[EB/OL]. (2004-01-01)[2016-03-20]. http://spinoff.nasa.gov.
    [5] GOSSELIN A M. Automated ground umbilical systems (AGUS) project: NASA-20130011368[R]. Washington, D. C. : NASA, 2007.
    [6] MANLEY W C, TAMASY G J, MALONEY P. Ares I linear mate umbilical plate and collet: NASA-N20130008828[R]. Washington, D. C. : NASA, 2012.
    [7] 白文龙, 李泳峄, 翟旺, 等. 运载火箭连接器自动对接技术应用分析[J]. 导弹与航天运载技术, 2017(6): 65-71.

    BAI W L, LI Y Y, ZHAI W, et al. Application analysis of automated mating technique used on launch vehicle filling connectors[J]. Missiles and Space Vehicles, 2017(6): 65-71(in Chinese).
    [8] 李泳峄, 吴新跃, 翟旺, 等. 基于柔性直角坐标机器人的火箭连接器自动对接过程分析及试验[J]. 导弹与航天运载技术, 2019(1): 116-121.

    LI Y Y, WU X Y, ZHAI W, et al. Analysis and experiment on the launch vehicle’s umbilical connector autonomous mating process based on flexible rectangular robot[J]. Missiles and Space Vehicles, 2019(1): 116-121(in Chinese).
    [9] 李泳峄, 翟旺, 张国栋, 等. 火箭推进剂输送连接器自动对接装置及其动态特性研究[J]. 机床与液压, 2020, 48(4): 13-18.

    LI Y Y, ZHAI W, ZHANG G D, et al. Research on dynamic characteristics of the autonomous mating equipment of launch vehicle’s umbilical connector[J]. Machine Tool & Hydraulics, 2020, 48(4): 13-18(in Chinese).
    [10] 李泳峄, 吴新跃, 李道平, 等. 运载火箭气液组合连接器动态自动对接技术[J]. 北京麻豆精品秘 国产传媒学报, 2021, 47(9): 1774-1779.

    LI Y Y, WU X Y, LI D P, et al. Dynamic automatic docking technology of gas-liquid composite umbilical connector for launch vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1774-1779(in Chinese).
    [11] 黄小妮, 顿向明, 张育林, 等. 运载火箭推进剂加注自动对接与脱离机器人本体设计[J]. 机器人, 2010, 32(2): 145-149. doi: 10.3724/SP.J.1218.2010.00145

    HUANG X N, DUN X M, ZHANG Y L, et al. The auto-docking and auto-separating mechanism designed for the rocket fuel loading[J]. Robot, 2010, 32(2): 145-149(in Chinese). doi: 10.3724/SP.J.1218.2010.00145
    [12] 游嘉伟, 顿向明, 山磊, 等. 运载火箭推进剂加注机器人机构设计[J]. 机电一体化, 2016, 22(4): 41-44.

    YOU J W, DUN X M, SHAN L, et al. Mechanism design of carrier rocket propellant filling robot[J]. Mechatronics, 2016, 22(4): 41-44(in Chinese).
    [13] 张鑫, 李志刚, 徐华, 等. 运载火箭自动对接连接器液压系统研究[J]. 兵器装备工程学报, 2016, 37(3): 146-150. doi: 10.11809/scbgxb2016.03.035

    ZHANG X, LI Z G, XU H, et al. Research of hydraulic system of automatic butt-joint connector for carrier booster[J]. Journal of Ordnance Equipment Engineering, 2016, 37(3): 146-150(in Chinese). doi: 10.11809/scbgxb2016.03.035
    [14] 原浩, 赵希梅. 一种双轴直驱平台新型同步渐近跟踪控制设计[J]. 机械工程学报, 2023, 59(5): 271-279. doi: 10.3901/JME.2023.05.271

    YUAN H, ZHAO X M. Design of a novel synchronous asymptotic tracking control for dual axis direct drive platform[J]. Journal of Mechanical Engineering, 2023, 59(5): 271-279(in Chinese). doi: 10.3901/JME.2023.05.271
    [15] 姜尚, 田福庆, 梁伟阁, 等. 基于干扰观测器与模糊前馈补偿的随动系统PID控制策略[J]. 火炮发射与控制学报, 2017, 38(2): 29-34.

    JIANG S, TIAN F Q, LIANG W G, et al. PID control strategy of servo system based on disturbance observer and fuzzy feed-forward compensation[J]. Journal of Gun Launch & Control, 2017, 38(2): 29-34(in Chinese).
    [16] 尹增愿, 蔡远文, 任元, 等. 磁悬浮转子状态反馈解耦自抗扰控制方法[J]. 北京麻豆精品秘 国产传媒学报, 2022, 48(7): 1210-1221.

    YIN Z Y, CAI Y W, REN Y, et al. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221(in Chinese).
    [17] 居龙, 黎定仕, 王南, 等. 脉动风载荷下发射平台摆杆的动态响应研究[J]. 工程机械, 2021, 52(2): 20-25. doi: 10.3969/j.issn.1000-1212.2021.02.006

    JU L, LI D S, WANG N, et al. Dynamic response research on umbilical arm of launch platform under stochastic wind load[J]. Construction Machinery and Equipment, 2021, 52(2): 20-25(in Chinese). doi: 10.3969/j.issn.1000-1212.2021.02.006
    [18] 邱惠清, 吴志君. 集装箱起重机的脉动风场仿真及响应分析[J]. 振动 测试与诊断, 2013, 33(1): 44-48.

    QIU H Q, WU Z J. Simulation of fluctuating velocity field and response analysis of container crane[J]. Journal of Vibration, Measurement& Diagnosis, 2013, 33(1): 44-48(in Chinese).
    [19] 董霞, 陈康宁, 李天石. 机械控制理论基础[M]. 西安: 西安交通大学出版社, 2005.

    DONG X, CHEN K N, LI T S. Theoretical basis of mechanical control[M]. Xi’an: Xi’an Jiaotong University Press, 2005(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  92
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-10-16
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答