留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进一致性算法的无人机编队队形保持控制器设计

万茹 马梓元 龚华军 王新华 张帅

万茹,马梓元,龚华军,等. 基于改进一致性算法的无人机编队队形保持控制器设计[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3555-3566 doi: 10.13700/j.bh.1001-5965.2023.0505
引用本文: 万茹,马梓元,龚华军,等. 基于改进一致性算法的无人机编队队形保持控制器设计[J]. 北京麻豆精品秘 国产传媒学报,2025,51(10):3555-3566 doi: 10.13700/j.bh.1001-5965.2023.0505
WAN R,MA Z Y,GONG H J,et al. Design of UAV formation-keeping controller based on improved consistency algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3555-3566 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0505
Citation: WAN R,MA Z Y,GONG H J,et al. Design of UAV formation-keeping controller based on improved consistency algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3555-3566 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0505

基于改进一致性算法的无人机编队队形保持控制器设计

doi: 10.13700/j.bh.1001-5965.2023.0505
详细信息
    通讯作者:

    E-mail:xhwang@nuaa.edu.cn

  • 中图分类号: V279;V249

Design of UAV formation-keeping controller based on improved consistency algorithm

More Information
  • 摘要:

    针对传统一致性算法中存在的大增益收敛振荡以及当编队队形受到平动转动同时施加的问题进行了深入研究。在传统一致性编队算法基础上引入虚拟长机,定义新的范数来扩展原有的一致性算法,以解决线性一致性算法中大增益收敛振荡的问题。针对传统一致性编队过程中平动转动的施加导致队形无法保持的问题,引入最大距离作为参考控制器的反馈,修正参考输入轨迹,以确保编队队形的同时,实现平动转动过程中的良好跟踪队形。结合开源飞控Ardupilot和开源仿真平台Airsim进行了联合半物理仿真,进一步验证了改进算法的可行性。研究结果表明:所提算法在解决传统一致性协议中存在的问题方面具有显著的改进,并在实际应用中具有较好的可行性。

     

  • 图 1  含虚拟长机编队的无向通信网络

    Figure 1.  Undirected communication network with virtual leader formation

    图 2  改进一致性编队算法控制框图

    Figure 2.  Control block of improved consistency formation algorithm

    图 3  最大距离求解示意

    Figure 3.  Solution of the maximum inter-agent distance

    图 4  大地坐标系转参考坐标系

    Figure 4.  Conversion from geodetic to reference coordinate system

    图 5  参考控制器模块设计框图

    Figure 5.  Design block of reference controller module

    图 6  4机设定菱形编队

    Figure 6.  Diamond formation of four UAVs

    图 7  传统一致性与改进一致性算法高度控制响应曲线对比

    Figure 7.  Height control response curves of traditional and improved consistency algorithms

    图 8  传统一致性与改进一致性算法速度控制响应曲线对比

    Figure 8.  Speed control response curves of traditional and improved consistency algorithms

    图 9  传统一致性与改进一致性算法偏航角控制响应曲线对比

    Figure 9.  Yaw angle control response curves of traditional and improved consistency algorithms

    图 10  编队xy平面飞行轨迹

    Figure 10.  Formation flight trajectories on xy plane

    图 11  通信拓扑网络

    Figure 11.  Communication topologynetwork

    图 12  最小生成树

    Figure 12.  Minimum spanning tree

    图 13  编队初始“横一字”队形

    Figure 13.  Initial horizontal-line formation

    图 14  $ t = 2 $ s时传统与改进一致性算法队形轨迹跟踪过程

    Figure 14.  Formation tracking traditional and improved consistency algorithms at t=2 s

    图 15  $ t = 5 $ s时传统与改进一致性算法队形轨迹跟踪过程

    Figure 15.  Formation tracking traditional and improved consistency algorithms at t=5 s

    图 16  $ t = 9 $ s时传统与改进一致性算法队形轨迹跟踪过程

    Figure 16.  Formation tracking traditional and improved consistency algorithms at t=9 s

    图 17  $ t = 12 $ s时传统与改进一致性算法队形轨迹跟踪过程

    Figure 17.  Formation tracking at traditional and improved consistency algorithms t=12 s

    图 18  修正前后参考轨迹状态量对比图

    Figure 18.  Comparison of reference trajectory states before and after correction

    图 19  修正后编队各机$ x $方向参考运动轨迹

    Figure 19.  Corrected x-direction reference trajectories for each UAV

    图 20  修正后编队各机$ y $方向参考运动轨迹

    Figure 20.  Corrected y-direction reference trajectories for each UAV

    图 21  修正后编队各机$ {\textit{z}} $方向参考运动轨迹

    Figure 21.  Corrected z-direction reference trajectories for each UAV

    图 22  修正前后$ {\textit{z}} $方向期望加速度与上下限加速度

    Figure 22.  Expected and upper/lower bound acceleration in z-direction before and after correction

    图 23  Airsim总体框架

    Figure 23.  Overall framework of AirSim simulation system

    图 24  不同时刻8机编队保持跟踪轨迹

    Figure 24.  Eight-UAV formation tracking at different time

    图 25  编队各机滚转角值

    Figure 25.  Roll angle of each UAV in formation

    图 26  编队各机俯仰角值

    Figure 26.  Pitch angle of each UAV in formation

    图 27  编队各机偏航角值

    Figure 27.  Yaw angle of each UAV in formation

    图 28  编队初始队形

    Figure 28.  Initial formation

    图 29  编队最终队形

    Figure 29.  Final formation

    图 30  队形变换视景仿真

    Figure 30.  Visual simulation of formation transformation

  • [1] 胡春鹤, 陈宗基. 基于Helly定理的多智能体最短时间一致性[J]. 北京麻豆精品秘 国产传媒学报, 2015, 41(9): 1701-1707.

    HU C H, CHEN Z J. Helly-theorem-based time-optimal consensus for multi-agent systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1701-1707(in Chinese).
    [2] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory& Applications, 2007, 1(2): 505-512.
    [3] 姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京麻豆精品秘 国产传媒学报, 2020, 46(5): 960-977.

    YAO H, XI J X, WANG C, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977(in Chinese).
    [4] KUSHLEYEV A, MELLINGER D, POWERS C, et al. Towards a swarm of agile micro quadrotors[J]. Autonomous Robots, 2013, 35(4): 287-300. doi: 10.1007/s10514-013-9349-9
    [5] 周文惠, 齐瑞云, 姜斌. 面向突发故障的分布式多无人机任务重规划方法[J]. 控制与决策, 2023, 38(05): 1373-1385.

    ZHOU W H, QI R Y, JIANG B. A mission replanning method of distributed multiple unmanned aerial vehicles for pop-up faults[J]. Control and Decision, 2023, 38(05): 1373-1385(in Chinese).
    [6] REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4): 324-333. doi: 10.1016/j.robot.2007.08.005
    [7] KURIKI Y, NAMERIKAWA T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control[J]. SICE Journal of Control, Measurement, and System Integration, 2015, 8(4): 285-294. doi: 10.9746/jcmsi.8.285
    [8] YUAN W, CHEN Q Y, HOU Z X, et al. Multi-UAVs formation flight control based on leader-follower pattern[C]//Proceedings of the 2017 36th Chinese Control Conference. Piscataway: IEEE Press, 2017: 1276-1281.
    [9] 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431.

    LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423-2431(in Chinese).
    [10] 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304. doi: 10.7641/CTA.2015.50314

    QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10): 1298-1304(in Chinese). doi: 10.7641/CTA.2015.50314
    [11] CHALLA V R, RATNOO A. Analysis of UAV kinematic constraints for rigid formation flying[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2016: 2105.
    [12] CROWTHER W J. Rule-based guidance for flight vehicle flocking[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2004, 218(2): 111-124. doi: 10.1243/0954410041322005
    [13] 任伟, 兰德尔. W. 比尔德. 多航行体协同控制中的分布式一致性: 理论与应用[M]. 吴晓锋, 译. 北京: 电子工业出版社, 2014: 5-7.

    REN W, BEARD R W. Distributed consensus in multi-vehicle cooperative control [M]. WU X F, translated. Beijing: Publishing House of Electronics Industry, 2014: 5-7(in Chinese).
    [14] REN W. Consensus based formation control strategies for multi-vehicle systems[J]. Proceedings of the American Control Conference, 2006: 4237-4242.
    [15] 苟进展, 梁天骄, 陶呈纲, 等. 基于一致性理论的无人机编队控制与集结方法[J]. 北京麻豆精品秘 国产传媒学报, 2024, 50(5): 1646-1654.

    GOU J Z, LIANG T J, TAO C G, et al. A Method of UAV Formation control and assembly based on consistency theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(5): 1646-1654(in Chinese).
    [16] 刘志江, 宋友, 李国宾, 等. 一致性算法和领航跟随法结合的多机编队控制[J]. 航天控制, 2022, 40(6): 46-52. doi: 10.3969/j.issn.1006-3242.2022.06.007

    LIU Z J, SONG Y, LI G B, et al. A Multi-aircraft formation control based on consistency algorithm and pilot following method[J]. Aerospace Control, 2022, 40(6): 46-52(in Chinese). doi: 10.3969/j.issn.1006-3242.2022.06.007
    [17] BOYD S, GHOSH A, PRABHAKAR B, et al. Analysis and optimization of randomized gossip algorithms[C]//Proceedings of the 2004 43rd IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2005: 5310-5315.
    [18] DOUGLAS B W. Introduction to graph theory[M]. 2ed. Hoboken: Prentice Hall, 2000.
  • 加载中
图(30)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  65
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 录用日期:  2024-01-21
  • 网络出版日期:  2024-02-05
  • 整期出版日期:  2025-10-31

目录

    /

    返回文章
    返回
    常见问答